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Why	Do	Fractals	Matter?

John	Archibald	Wheeler	(b.	1911),	protégé	of	the	quantum	pioneer	Niels	Bohr
and	friend	of	Albert	Einstein,	has	been	at	the	cutting	edge	of	20th-century
physics,	cosmology	and	quantum	theory.	Ian	Stewart	is	a	respected	Professor	of
Mathematics	at	Warwick	University.	They	are	among	the	many	scientists	agreed
that	fractal	geometry	is	a	revolutionary	breakthrough	in	our	comprehension	of
reality.



NO	ONE	WILL	BE	CONSIDERED	SCIENTIFICALLY	LITERATE	TOMORROW	WHO	IS	NOT	FAMILIAR	WITH	FRACTALS	FRACTALS	ARE	IMPORTANT	BECAUSE	THEY	REVEAL	A	NEW
AREA	OF	MATHEMATICS	DIRECTLY	RELEVANT	TO	THE	STUDY	OF	NATURE



A	Smooth	World	or	a	Rough	One?

Plato	sought	to	explain	nature	with	five	regular	solid	forms.	Newton	and	Kepler
bent	Plato’s	circle	into	an	ellipse.	Modern	science	analysed	Plato’s	shapes	into
particles	and	waves,	and	generalised	the	curves	of	Newton	and	Kepler	to
relative	probabilities	–	still	without	a	single	“rough	edge”.	Now,	more	than	two
thousand	years	after	Plato,	nearly	three	hundred	years	after	Newton,	Benoît
Mandelbrot	has	established	a	discovery	that	ranks	with	the	laws	of	regular
motion.	Professor	Eugene	Stanley,	Center	for	Polymer	Studies,	Department	of
Physics,	Boston	University





The	world	that	we	live	in	is	not	naturally	smooth-edged.	The	real	world	has	been
fashioned	with	rough	edges.	Smooth	surfaces	are	the	exception	in	nature.	And
yet,	we	have	accepted	a	geometry	that	only	describes	shapes	rarely	–	if	ever	–
found	in	the	real	world.	The	geometry	of	Euclid	describes	ideal	shapes	–	the
sphere,	the	circle,	the	cube,	the	square.	Now	these	shapes	do	occur	in	our	lives,
but	they	are	mostly	man-made	and	not	nature-made.

Uniform	Rectangular	objects	like	boxes	and	buildings..	..Do	not	appear	in	nature



The	Texture	of	Reality

Nature	deals	in	non-uniform	shapes	and	rough	edges.	Take	the	human	form.
There	is	a	certain	symmetry	about	it,	but	it	is,	and	has	always	been,	indescribable
in	terms	of	Euclidean	geometry.	It	is	not	a	uniform	shape.	This	is	the	issue.	What
has	been	missing	from	the	scientific	repertoire	until	very	recently	has	been	a	way
of	describing	the	shapes	and	objects	of	the	real	world.



Clouds	Are	Not	Spheres	Bark	Is	Not	Smooth	Mountains	Are	Not	Cones,	Coastlines	Are	Not	Circles,	Nor	Does	Lightning	Travel	In	Straight	Lines



The	word	“fractal”	was	coined	in	1975	by	the	Polish/French/American
mathematician,	Benoît	Mandelbrot	(b.	1924),	to	describe	shapes	which	are
detailed	at	all	scales.	He	took	the	word	from	the	Latin	root	fractus,	suggesting
fragmented,	broken	and	discontinuous.

Fractal	geometry	is	the	geometry	of	the	irregular	shapes	we	find	in	nature,	and	in
general	fractals	are	characterized	by	infinite	detail,	infinite	length,	and	the
absence	of	smoothness	or	derivative.

..	The	Broken,	Wrinkled	And	Uneven	Shapes	Of	Nature,	Unlike	Euclid’S	Ideal	Forms	Fractal	Geometry	Is	The	Geometry	Of	The	Natural	World-Animal,	Vegetable	And	Mineral…



The	Origins	of	Fractals

Fractal	geometry	is	an	extension	of	classical	geometry.	It	does	not	replace
classical	geometry,	but	enriches	and	deepens	its	powers.	Using	computers,
fractal	geometry	can	make	precise	models	of	physical	structures	–	from	sea-
shells	to	galaxies.

We	will	now	trace	the	historical	development	of	this	mathematical	discipline	and
explore	its	descriptive	powers	in	the	natural	world,	then	look	at	the	applications
in	science	and	technology	and	at	the	implications	of	the	discovery.

Fractal	Geometry	is	a	new	language	once	you	speak	it,	you	can	describe	the	shape	of	a	cloud	as	precisely	as	an	architect	a	house!



Euclid	of	Alexandria	(c.	300	BC)	laid	down	the	rules	which	were	to	define	the
subject	of	geometry	for	millennia	to	come.	The	shapes	that	Euclid	studied	–
straight	lines	and	circles	–	proved	so	successful	in	explaining	the	universe	that
scientists	became	blind	to	their	limitations,	denouncing	patterns	that	did	not	fit	in
Euclid’s	scheme	as	“counterintuitive”	and	even	“pathological”.



A	steady	undercurrent	of	ideas,	starting	in	the	19th	century	with	discoveries	by
Karl	Weierstrass	(1815–97),	Georg	Cantor	(1845–1918)	and	Henri	Poincaré
(1845–1912),	led	inexorably	towards	the	creation	of	a	whole	new	kind	of
geometry,	with	the	power	to	describe	aspects	of	the	world	inexpressible	in	the
basic	language	of	Euclid.



The	Calculus

Johannes	Kepler	(1571–1630)	was	the	first	to	realize	that	planets	followed
elliptical	orbits,	not	perfect	circles.	Edmond	Halley	(1656–1742)	guessed	that
elliptical	orbits	could	be	explained,	by	analogy	with	light,	using	an	inverse
square	law.

However,	He	lacked	the	means	of	proving	this	the	necessary	tools	had	not	yet	been	invented



Sir	Isaac	Newton	(1642–1727)	derived	a	new	method	of	reasoning	based	on	the
idea	of	vanishingly	small	quantities,	or	infinitesimals,	in	order	to	tame	the
complex	motions	of	projectiles	and	planets	and	arrive	at	his	celebrated	theory	of
universal	gravitation.	The	calculus	was	conceived	simultaneously	by	Newton
and	Gottfried	Wilhelm	Leibniz	(1646–1716).	Leibniz	developed	the	clearest
formulation	of	the	calculus,	including	the	notation	which	is	used	to	this	day.

The	twin	tools	of	the	calculus	are	differentiation	and	integration.
Differentiation	gives	the	derivative,	or	rate	of	change,	of	a	variable.	Rate	of
change	is	the	key.	For	example,	inflation	is	the	rate	of	change	of	prices:	the	first
derivative	of	average	prices.	Velocity	is	the	rate	of	change	of	position	over	time:
the	first	derivative	of	position.	The	second	derivative	of	position,	the	rate	of
change	of	velocity,	is	called	acceleration.



Integration	is	the	reverse	operation.	Future	values	of	a	variable	can	be	found	by
integrating,	or	summing,	its	rate	of	change	at	each	instant	in	time.	Systems
controlled	by	physical	forces	like	gravity	can	be	analysed	in	terms	of	their	rate	of
change.	Combining	these	changes	defines	the	evolution	of	the	system.



The	Paradox	of	Infinitesimals

Newton’s	theory	of	infinitesimals	is	riddled	with	paradoxes.	The	question	of	the
infinite	divisibility	of	space	had	perplexed	philosophers	for	thousands	of	years.



It	took	the	efforts	of	Augustin	Louis	Cauchy	(1789–1857)	and	his	pupil	Karl
Weierstrass	to	banish	infinitesimals.	Until	then,	it	was	quite	possible	that	the
entire	edifice	of	applied	mathematics	was	founded	upon	a	contradiction.



Effects	of	Calculus

Despite	lacking	a	solid	theoretical	justification,	the	calculus	was	extremely
successful.	Newton’s	three	laws	of	motion	and	the	electromagnetic	equations	of
James	Clerk	Maxwell	(1831–79)	flowed	from	this	empowering	discovery.	The
physical	sciences	were	transformed.	It	was	assumed	that	all	phenomena	could	be
understood	in	terms	of	these	new	techniques.	Pierre	Simon	Laplace	(1749–
1827)	claimed	that	given	the	position	of	every	particle	in	the	universe	and	its	rate
of	change,	we	could	predict	the	entire	future	of	the	universe	forever	in	its	every
detail.



The	methods	of	the	calculus	apply	wherever	a	curve	is	smooth.	It	was	thought
that	any	curve	with	bends	or	kinks	could	be	split	into	separate	smooth	curves
that	would	then	succumb	to	calculus.	That	any	curve	could	have	only	isolated
corner	points	was	not	even	questioned.



The	First	Fractal

The	first	mathematical	fractal	was	discovered	in	1861.	Karl	Weierstrass
delighted	in	finding	flaws	in	the	arguments	of	others.	His	quest	for	absolute
rigour	led	to	his	discovery	of	a	nowhere	differentiable	continuous	function:	that
is,	a	curve	consisting	completely	of	corners.	It	was	just	not	possible	to	define	its
rate	of	change	at	any	point.	There	was	no	smoothness	anywhere.	This	was	a
shock	to	the	scientists	of	the	day.



Weierstrass’s	function	was	thought	to	be	an	aberration,	a	“pathological”	product
of	the	human	mind	resembling	nothing	to	be	found	in	nature.	Weierstrass	and
Cauchy	developed	a	new	branch	of	mathematics	called	Analysis.	Analysis	was
an	attempt	to	bring	a	new	rigour	to	mathematics.	Precise	notions	of	number	and
continuity	were	sought.

A	Mathematician	Who	Is	Not	Also	Something	Of	A	Poet	Will	Never	Be	A	Perfect	Mathematician





Firm	Foundations	and	Sets

Mathematicians	have	always	sought	to	put	their	discipline	on	a	firm	foundation.
Analysis	showed	how	all	mathematics	could	be	explained	in	terms	of	simple
whole	numbers.	Could	even	the	numbers	be	reduced	to	pure	logic?	There	were
several	attempts,	based	on	the	idea	of	sets.

All	mathematics	can	be	defined	in	terms	of	sets.	For	example,	numbers	can	be
seen	simply	as	properties	of	sets.	Three	is	the	common	feature	shared	by	all	sets
with	three	members.	The	circularity	is	removed	by	defining	one	set	with	three



with	three	members.	The	circularity	is	removed	by	defining	one	set	with	three
members,	and	appealing	to	the	idea	of	one-to-one	correspondence.



What	Are	Sets?

A	set	is	a	collection	of	things	which	can	be	thought	of	as	a	single	object.	This
definition,	by	the	way,	excludes	self-contradictory	ideas	like	the	“set	of	all	sets”!
Sets	can	contain	other	sets	but	they	cannot	contain	themselves,	for	this	way	lies
madness.	Bertrand	Russell	(1872–1970),	in	his	famous	paradox,	exposed	the
dangers	of	allowing	sets	to	contain	themselves.

Interestingly,	“set”	has	more	distinct	meanings	than	any	other	word	in	the
English	language.	The	Oxford	English	Dictionary	lists	126	different	definitions,
many	concerning	groups	or	collections	of	objects.	(“Mandelbrot”	has	only	one
meaning	in	any	language,	namely	“almond	bread”.)

Does	The	Set	Of	All	Sets	Which	Don’t	Contain	Themselves	Contain	Itself?



Cantor	and	the	Continuum

A	major	stumbling	block	was	the	infinite.	It	required	a	leap	of	faith	that	many
mathematicians	were	unwilling	to	take.
Georg	Cantor,	one	of	the	pioneers	of	modern	set	theory,	started	out	on	a	problem
which	continued	to	vex	him	for	the	rest	of	his	life:	the	nature	of	the	continuum.
The	continuum	is	the	ideal	infinitely	divisible	space	conceptually	required	for	a
theory	of	continuous	change.

Are	there	more	real	numbers	than	integers?	Whichever	real	number	appears	on
the	right-hand	side,	can’t	we	just	find	an	integer	to	set	opposite	it,	since	there	are
infinitely	many	integers?

I	Will	Show	That	The	Points	Of	The	Continuum	Are	More	Numerous	Than	The	Natural	Numbers



infinitely	many	integers?
Well,	look	at	the	number	on	the	diagonal.
It	is	0.1704826	…
Now	change	this	by	subtracting	one	from	each	of	the	digits.
It	becomes	0.0693715	…
This	number	will	never	appear	on	the	list	because	it	differs	in	at	least	one	of	the
decimal	places	from	anything	which	appears	there.
So,	there	are	more	reals	than	integers.

	

Cantor’s	argument	implied	the	existence	of	different	types	of	infinity.	He	went	on
to	develop	a	whole	new	theory	of	transfinite	arithmetic,	convinced	that	he	had
uncovered	a	powerful	new	principle	of	reality	with	profound	physical	and
spiritual	implications.

There	Is	No	One-To-One	Correspondence	Between	The	Real	Numbers	&	The	Natural	Numbers	The	Number	Of	Real	Numbers	Is	Actually	Greater	Than	The	Number	Of	Rational	Numbers	…	And	It’S
Not	Countable



The	Cantor	Set

Cantor’s	quest	for	the	meaning	of	continuity	led	him,	in	1883,	to	the	set	that	is
now	named	after	him,	one	of	the	first	fractals	to	be	studied	mathematically.	It
was	actually	discovered	by	Henry	Smith,	a	professor	of	geometry	at	Oxford,	in
1875.

Take	a	line,	remove	the	middle	third,	leaving	two	equal	lines.	Likewise	remove
the	middle	thirds	from	each	of	these	two	lines.	Repeat	this	process	an	infinite
number	of	times,	and	you	are	left	with	the	Cantor	set.

The	Cantor	set	has	no	length	or	interior.	In	technical	parlance,	it	has	“zero
measure”.	A	randomly	thrown	dart	is	infinitely	unlikely	to	hit	it.	It	is	“nowhere
dense”.	Every	part	of	it	consists	almost	completely	of	holes.



And	yet	despite	being	nothing	but	totally	disconnected	points,	it	is	uncountable.
In	fact,	it	contains	as	many	points	as	the	whole	line	it	is	carved	from.	Every	point
is	an	“accumulation”	or	“limit”	point,	meaning	there	are	infinitely	many	other
points	from	the	set	in	any	neighbourhood	of	it,	no	matter	how	small.	Conversely,
the	Cantor	set	contains	all	of	its	limit	points.

Any	point	arbitrarily	close	to	the	set	must	actually	belong	to	it.

It	is	what	Cantor	called	a	“perfect”	set.	It	is	equal	to	its	set	of	limit	points.	The



It	is	what	Cantor	called	a	“perfect”	set.	It	is	equal	to	its	set	of	limit	points.	The
existence	of	this	infinitely	divisible	yet	totally	discontinuous	set	forced	Cantor	to
refine	his	notion	of	continuity.



Peano’s	Space-Filling	Curve

Mathematicians	were	searching	for	a	definition	of	dimension.	A	bombshell	burst
around	1890	when	Giuseppe	Peano	(1858–1932)	discovered	what	was	called	a
“space-filling	curve”.	Peano	had	constructed	an	idealized	curve	which	twisted	in
such	a	complex	way	that	it	visited	every	point	in	the	entire	plane.

There	was	no	point	on	the	plane	that	Peano’s	curving	line	would	not	include.

If	You	Try	To	Plot	It..	..It	Will	Actually	Fill	The	Whole	Plane	Of	The	Paper



This	created	an	unpleasant	situation	for	mathematicians:	a	bit	like	biologists
being	unable	to	define	life,	or	philosophers	consciousness.	The	very	two-
dimensionality	of	the	plane	lay	in	its	set	of	points.

Was	there	a	mapping	that	was	both	continuous	and	one-to-one?	If	so,	the
concept	of	dimension	would	have	no	topological	meaning	whatsoever.
Topology	is	a	mathematical	study	of	geometrical	properties	and	spatial	relations
that	remain	unaffected	by	continuous	stretching,	bending,	twisting,	etc.

I	Demonstrated	A	One-To-One	Mapping	From	A	Line	To	A	Plane,	Although	It	Was	Not	Continuous	My	Curve	Was	Continuous	But	Not	One-To-One



Topological	and	Fractal	Dimension

In	1911,	Luitzen	Brouwer	(1881–1966)	proved	that	there	could	be	no	such
mapping.	Dimension	is	a	topological	invariant.	It	cannot	be	altered	by
continuous	deformation.

This	gives	a	definition	of	the	dimension	of	a	shape	or	space,	called	the
topological	dimension.	Another	line	of	reasoning	by	Felix	Hausdorff	(1869–
1942)	led	to	a	different	take	on	dimension.	Focusing	on	the	manner	in	which
shapes	fill	the	space	around	them,	Hausdorff	derived	a	measure	which	extends
our	intuitive	ideas	of	dimensionality.	For	more	complicated	shapes,	other	than
normal	Euclidean	objects,	Hausdorff’s	approach	gave	a	fractional	dimension.
This	allows	for	the	intriguing	possibility	of	one-and-a-half-dimensional
objects.

How	can	a	shape	lie	in-between	dimensions?	By	being	fractal.





Self-Similarity

Visually,	it	is	apparent	that	the	Cantor	set	consists	simply	of	two	small	copies	of
itself.	This	property	is	known	as	self-similarity.

Any	part	of	a	straight	line	is	itself	a	straight	line,	identical	to	the	whole	line
except	for	a	scaling	factor.	Most	Euclidean	shapes	do	not	share	this	property.

These	shapes	are	incredibly	complicated	to	describe	in	Euclidean	terms,	yet
share	an	affinity	with	the	so-called	“pathological”	shapes	of	modern

An	Arc	Of	A	Circle	Is	Not	Itself	A	Circle	A	Side	Of	A	Triangle	is	Not	Triangular	Yet	In	Nature	Such	Self-Similarity	Abounds	Trees,	Clouds	And	Mountains	All	Resemble	Smaller	Parts	Of	Themselves



share	an	affinity	with	the	so-called	“pathological”	shapes	of	modern
mathematics,	displaying	an	endless	series	of	motifs	within	motifs	repeated	at	all
scales.



The	Koch	Curve

One	such	“pathological”	shape	is	the	snowflake	curve,	devised	by	Helge	von
Koch	(1870–1924)	in	1904.	He	defined	the	curve	as	the	limit	of	an	infinite
sequence	of	increasingly	wrinkly	curves.	The	finished	curve	is	infinitely	long,
despite	being	contained	in	a	finite	area.	It	has	no	tangent	or	smoothness
anywhere.	Slicing	the	curve	at	certain	angles	reveals	an	infinity	of	Cantor	sets
lurking	within.

What	Koch	didn’t	realize	was	that	such	curves	with	infinite	length	would	make
ideal	models	for	the	shapes	of	the	real	world,	like	coastlines	and	arteries.



A	Cantor	set	contains	two	one-third-sized	copies	of	itself.	A	straight	line	can	be
split	into	three	one-third-sized	copies	of	itself.	A	Koch	curve	consists	of	four
one-third-sized	copies	of	itself.	A	square	is	made	up	of	nine	one-third-sized
copies	of	itself.	In	some	sense	the	Cantor	set	and	Koch	curve	lie	on	either	side	of
the	straight	line.	The	Koch	curve	is	between	the	line	and	the	square.	It	takes	up
more	space	than	the	line,	but	less	space	than	the	square.	It	lies	somehow	between
the	first	and	second	dimensions!	This	can	be	described	precisely	by	the	concept
of	similarity	dimension,	as	you	can	see	on	the	next	page.



Similarity	and	Fractal	Dimension

A	cube,	which	is	three-dimensional,	can	be	cut	into	eight	(two	to	the	power	of
three)	half-sized	cubes.	If	we	know	the	dimension	of	an	object,	powers	or
exponents	allow	us	to	work	out	how	many	smaller	copies	of	itself	the	object
contains,	of	any	particular	size.	An	n-dimensional	shape	is	composed	of	mn	1/m-
sized	copies	of	itself.	This	suggests	a	generalization	of	the	concept	of	dimension,
which	allows	fractional	values.

Logarithms	are	the	reverse	of	exponents.	If	we	know	how	many	smaller	copies
of	itself	an	object	contains,	and	the	relative	size,	logarithms	allow	us	to	calculate
the	dimension	of	the	object.	And	it	needn’t	be	a	whole	number.

The	Koch	curve	contains	four	one-third-sized	Koch	curves.	Its	dimension	is
therefore	log4/log3,	or	about	1.26.



The	Cantor	set	contains	two	one-third-sized	Cantor	sets.	It	has	dimension
log2/log3,	or	about	0.63.

In	1919,	Felix	Hausdorff	extended	the	notion	of	the	similarity	dimension	to
cover	all	shapes,	not	just	the	exactly	self-similar.	In	general,	fractal	shapes	that
lie	somewhere	between	dimensions	have	fractional	Hausdorff	dimension.
Because	Hausdorff’s	definition	distinguishes	fractal	from	non-fractal	shapes,	it	is
often	called	the	fractal	dimension.

The	fractal	dimension	describes	the	fractal	complexity	of	an	object.	For
example,	the	coastline	of	Britain	has	a	fractal	dimension	of	approximately	1.26,
about	the	same	as	the	Koch	curve,	but	slightly	less	than	the	outline	of	a	typical
cloud	(about	1.35).	On	this	scale,	a	dimension	of	1	means	totally	smooth,	while
tending	towards	2	implies	increasing	fractal	complexity.



Hausdorff’s	dimension	was	only	a	theoretical	device	until	Mandelbrot
resurrected	it	and	put	it	to	use.	Mandelbrot	had	the	vision	to	realize	that	this	was
the	perfect	tool	to	describe	the	irregularity	of	nature.



Measuring	Fractal	Dimension

Although	general	in	scope,	the	Hausdorff	dimension	is	often	difficult	to	calculate
in	practice.	A	simpler	way	to	measure	the	fractal	dimension	of	a	curve	is	called
the	box-counting	method.	Cover	the	curve	with	a	grid	of	little	squares	and	count
how	many	squares	it	passes	through.	Repeat	this	process	with	smaller	and
smaller	squares.	In	the	limit	for	a	fractal	curve,	the	rate	at	which	the	proportion
of	filled	squares	decreases	gives	the	fractal	dimension.



In	the	case	of	a	straight	line,	halving	the	size	of	the	squares	requires	twice	as
many	squares	to	cover	it.	However,	for	a	fractal,	more	than	twice	as	many
squares	are	needed.	A	two-dimensional	shape	requires	four	times	as	many
squares.	A	fractal	curve	is	somewhere	in	between,	requiring	more	than	twice,	but
less	than	four	times,	as	many.





Lewis	Richardson

Acting	like	an	18th-century	naturalist,	Mandelbrot	scoured	through	forgotten	and
obscure	journals	in	his	quest	for	insight.

Mandelbrot	had	struck	a	rich	seam,	and	he	knew	it.



I	Uncovered	The	Work	Of	An	Eccentric	And	Unremembered	Mathematician	Called	Lewis	F	Richardson



Richardson	delighted	in	asking	questions	that	no	one	else	even	considered	worth
asking.	One	of	his	papers,	entitled	“Does	the	wind	possess	a	velocity?”,
anticipated	later	work	by	Edward	Lorenz	(b.	1917)	and	the	other	founders	of
chaos	theory.

One	of	this	mathematician’s	great	insights	was	a	model	of	turbulence	as	a
collection	of	ever-smaller	eddies.	He	conveyed	the	idea	poetically	in	the	style	of
Swift.



How	Long	is	a	Coastline?

What	really	struck	Mandelbrot	full	force	was	Richardson’s	1961	paper	entitled
“How	long	is	the	coastline	of	Britain?”.	What	appears	to	be	a	simple	question	of
geography	transpires,	upon	further	consideration,	to	expose	some	of	the	essential
features	of	fractal	geometry.	Richardson	concluded	that	the	length	of	the
coastline	is	not	well	defined.



The	measured	length	of	the	coastline	depends	upon	the	size	of	your	measuring
stick.

In	the	limit,	as	the	measurements	become	increasingly	accurate,	the
length	of	the	coastline	approaches	infinity.
In	other	words,	the	coastline	of	Britain,	and	any	other	natural
geological	formation,	is	fractal.



After	an	exhaustive	analysis	of	all	the	cartographical	data	available	to	him,
Richardson	plotted	a	graph	of	his	results	against	the	logarithm	of	the	size	of	the
measuring	stick.	Mandelbrot	twigged	that	the	slope	of	Richardson’s	graph	was
none	other	than	the	Hausdorff	dimension	of	the	coastline.



length	of	coastline	length	of	measuring	stick



This	is	the	measure	of	the	wrinkliness	of	the	coastline.	So,	Richardson’s	original
question	can	now	be	rephrased	as:	“How	wrinkly	is	the	coastline	of	Britain?”
The	question	can	now	be	answered	in	terms	of	fractal	dimension.

From	richardson’s	data	i	deduced	that	the	coastline	of	britain	has	a	fractal	dimension	of	about	1.26,	about	the	same	as	the	koch	curve





The	Sierpinski	Gasket

The	Polish	mathematician	Vaclav	Sierpinski	(1882–1969)	introduced	his	fractal
in	1916,	but	the	underlying	principles	had	been	known	to	artists	for	millennia.
Early	prototypes	of	the	Sierpinski	gasket	appear	on	the	12th-century	pulpit	of	the
Ravello	cathedral,	designed	by	Nicola	de	Bartolomeo	of	Foggia,	where	they
have	been	sketched	by	the	famous	artist	of	“graphic	enigmas”,	Maurits	Escher
(1898–1972).



The	Sierpinski	gasket	is	obtained	by	starting	with	a	filled	equilateral	triangle,
which	is	then	divided	into	four	smaller	equilateral	triangles,	of	which	the	middle
one	is	removed,	leaving	a	triangular	hole.



The	three	remaining	filled	equilateral	triangles	are	then	divided	in	exactly	the
same	fashion,	so	that	three	smaller	triangular	holes	appear.

Conceptually	we	can	repeat	this	process	indefinitely,	at	smaller	and	smaller
scales,	reaching,	in	the	limit,	Sierpinski’s	gasket,	a	shape	composed	of	three
copies	of	itself,	each	half	as	big	as	the	whole.



The	same	thing	can	be	done	with	squares,	pentagons	or	any	other	polygons.
Similar	techniques	work	with	circles.	These	patterns,	made	by	successively
carving	three	circles	out	of	ever-decreasing	circles,	show	remarkable	similarity
to	Celtic	art.







The	Sierpinski	gasket	is	a	product	of	the	mind,	an	exercise	of	pure	mathematics.
Yet	remarkably	similar	patterns	are	found	on	sea	shells.	Fractal	shapes	often
emerge	as	a	result	of	cellular	evolution.





The	Chaos	Game

In	the	1980s	Michael	Barnsley	discovered	another	way	of	generating	a	fractal.
It’s	a	bit	like	dot-to-dot	drawings,	only	you	don’t	join	the	dots	with	lines.	You
just	plot	point	after	point	according	to	some	simple	rules.



It’s	not	much	of	a	game.	With	only	one	player	having	just	one	move,	the	game
does	not	allow	for	a	great	deal	of	choice.	After	you	have	chosen	your	initial
point,	the	future	of	the	game	is	decided.

As	Michael	Barnsley	discovered,	if	we	had	chosen	different	points,	we	could
have	generated	a	fern	instead,	or	any	other	fractal	–	or	any	shape	at	all,	come	to
that.	Every	picture	can	be	encoded	as	a	fractal	formula	like	this.





Strange	Attractor

What	is	less	obvious	is	that,	in	the	long	run,	your	initial	decision	actually	makes
no	noticeable	difference	at	all.	What	actually	happens	is	that	the	points	are
pulled	towards	what	is	known	as	an	“attractor”	–	a	strange	attractor	in	this	case!
Benoît	Mandelbrot	has	questioned	the	wisdom	of	this	name,	preferring	“fractal
attractor”,	on	the	grounds	that	this	type	of	attractor	is	actually	by	far	the
commonest	in	nature,	so	not	really	that	strange	after	all.



A	Strange	Attractor	Is	Basically	One	Which	If	Fractal



Pascal’s	Triangle

Another	strange	thing	was	the	discovery	of	the	Sierpinski	triangle	inside	Pascal’s
triangle.

Remember	school	algebra:

Forgetting	the	x’s	and	just	looking	at	the	coefficients,	a	pattern	emerges.

This	graphical	representation	was	known	to	ancient	cultures	around	the	world.

These	numbers	are	fundamental	in	mathematics.

The	numbers	in	Pascal’s	triangle	represent	the	number	of	choosing	some	number
of	objects	out	of	some	other	number	of	objects.

So,	for	example,	the	6	in	the	fourth	row	gives	you	the	number	of	ways	ot
choosing	two	identical	objects	out	of	four.



What	happens	if	you	colour	black	the	odd	numbers	in	the	triangle,	leaving	the
even	ones	white?

A	familiar	shape	appears.





Basins	of	Attraction

Fractals	often	appear	as	the	boundary	between	different	zones	of	attraction.
Imagine	three	fixed	magnets,	each	aligned	so	as	to	attract	a	further	magnet	which
swings	above	them	on	a	pendulum.	The	hanging	magnet	will	swing	around	for	a
while	before	coming	to	rest	above	one	of	the	fixed	ones.	Sometimes	it	will	travel
almost	directly	to	a	stable	position	of	rest.	At	other	times	it	will	oscillate	many
times	from	one	area	to	another	before	finally	coming	to	rest.

Colouring	the	zones	of	attraction	black,	grey	and	white	leads	to	the	following
observation.

Between	white	and	black	there	is	always	grey.
Between	black	and	grey	there	is	always	white.



Between	black	and	grey	there	is	always	white.
Between	grey	and	white	there	is	always	black.

In	this	case,	the	attraction	is	physical.	The	pendulum	is	literally	pulled	in	to	one
of	the	magnets.	However,	many	attractors	exist	on	a	more	abstract	level.	When
the	population	of	a	species	reaches	a	stable	level,	this	state	can	be	thought	of	as
an	attractor	for	the	ecosystem.	There	are	many	other	and	stranger	attractors
competing	for	control	of	their	abstract	space.



Poincaré	and	Non-Linearity

Henri	Poincaré,	mathematician,	physicist	and	philosopher	of	science,	showed
that	deep	insights	into	the	rather	complicated	behaviour	of	dynamical	systems
can	be	obtained	from	quite	simple	mathematical	models.

Shapes	like	the	Koch	curve	and	the	Sierpinski	triangle	are	constructed



Shapes	like	the	Koch	curve	and	the	Sierpinski	triangle	are	constructed
analytically	and	intentionally	to	have	their	strange	properties.	What	Poincaré
discovered,	at	the	beginning	of	the	20th	century,	was	a	class	of	fractals	that	just
emerged	spontaneously	and	unexpectedly	from	non-linear	equations.

More	than	half	a	century	had	to	pass,	however,	before	technology	had
progressed	far	enough	for	these	fractals	to	become	visible	on	a	computer	screen.

Poincaré	was	looking	at	the	abstract	world	of	mappings,	but	was	limited	in	how
far	he	could	take	his	research.	Years	later,	doing	the	dirty	work	on	pocket
calculators,	the	efforts	of	ecologists	and	economists	to	model	real	systems	lead
back	to	these	very	same	mappings.

I	examined	the	limit	sets	of	groups	of	inversions	the	patterns	made	by	starting	with	a	few	circles	and	repeatedly	reflecting	them	all	in	each	other,	and	found	them	to	be	very	intricate	indeed.



Malthus	and	Population	Growth

The	English	economist	Thomas	Malthus	(1766–1834)	observed	that	the	human
population	was	increasing	at	an	exponential	rate,	while	food	production	was	only
growing	linearly.

This	population	model	has	a	number	of	weaknesses.	In	particular,	it	assumes	a
constant	rate	of	population	growth,	and	does	not	allow	for	negative	feedback.	In



reality,	once	a	population	has	reached	a	certain	level,	the	brakes	come	on	and	the
growth	is	checked.



Negative	Feedback

In	the	1840s,	Belgian	mathematician	Pierre	François	Verhulst	(1804–49)
refined	Malthus’	model	to	allow	for	negative	feedback.	He	assumed	that	the
population	of	a	species	in	one	year	was	a	simple	function	of	the	population	in	the
previous	year.

Assuming	the	rate	of	change	to	be	proportional	to	distance	from	maximum
population,	Verhulst	came	up	with	a	much	more	realistic	model	of	population
growth.	This	model	predicted	that,	under	the	right	circumstances,	population
would	stabilize	in	equilibrium.

If	the	population	fell	below	a	certain	level	one	year,	then	it	would	tend	to
increase	in	the	next.



While	if	it	rose	too	high,	competition	for	space	and	resources	would	tend	to
bring	it	down.



The	Logistic	Equation

The	formula	which	Verhulst	derived	is	now	known	as	the	logistic	equation.	The
revival	of	interest	in	this	equation	in	the	1970s	led	to	some	of	the	most	beautiful
discoveries	in	the	embryonic	science	that	would	come	to	be	called	chaos	theory.

In	fact,	the	study	of	simple	feedback	models	had	scarcely	advanced	since
Verhulst,	because	without	electronic	assistance,	the	calculations	involved	were
far	too	tedious	and	cumbersome	to	perform.

The	Verhulst	formula	itself	is	very	simple,	but	because	you	have	to	repeat	the
process	over	and	over	again,	it	ends	up	being	very,	very	complicated.

If	x	is	the	population	now,	then	the	population	next	year	is	given	by



As	we’ve	pointed	out,	we	can	estimate	the	population	of	a	species	in	one	year	as
a	function	of	the	population	level	of	the	year	before.	If	we	are	interested	–	and
ecologists	are	–	in	the	long-term	behaviour	of	systems,	we	have	to	repeat	this
formula	over	and	over	and	over	again	and	see	what	happens.	This	process	is
called	iteration.



Iteration

Iteration	means	the	repeated	application	of	a	rule	or	a	step	in	an	algorithm.
Algorithm	means	the	rules	for	performing	complex	calculations	by	a	sequence	of
simpler	ones,	e.g.,	digit-by-digit	multiplication.	Computer	programs	use
algorithms.
It’s	like	a	dog	chasing	its	own	tail.	The	output	of	one	operation	becomes	the
input	of	the	other,	and	so	on	and	on.



The	population	rises	and	falls,	but	closes	in	on	a	fixed	number.



Video	Feedback

Here	is	the	classic	example	of	iteration.	A	live	camera	points	at	the	screen	that	it
feeds,	producing	an	image	of	an	endless	tunnel	of	screens	within	screens.	If	each
is	smaller	than	the	one	before	it,	these	images	ultimately	vanish	to	a	point.
This	point	is	an	attractor	for	the	system.

As	Michael	Barnsley	has	shown,	if	you	add	another	screen,	each	screen	now
shows	two	screens,	each	showing	two	screens,	etc.	The	screens	are	no	longer	all



inside	each	other:	the	limit	set	is	much	more	complicated.

It,	is	in	fact	a	strange	attractor,	and	can	take	a	wide	variety	of	fractal	forms,
including	the	Cantor	set.

With	more	screens,	even	greater	variety	is	possible.	The	Sierpinski	triangle
requires	three	screens.



Robert	May	and	the	Verhulst	Model

In	the	1970s,	Robert	May	(b.	1936)	was	one	of	those	intrepid	ecologists	who,	in
his	attempts	to	unravel	the	mystery,	turned	his	attention	back	to	the	Verhulst
model.	Mathematicians	thought	he	was	mad.

There	are	many	surprises	in	store	for	mathematicians,	which	flow	from	this
simple	quadratic	iterator.

What	new	can	you	possibly	expect	to	find	in	such	a	simple	equation?



Robert	May	uncovered	a	vast	variety	of	different	types	of	population	behaviour
following	this	tack.	The	simplest	of	all	was	stable	equilibrium.	The	population
would	home	in	on	a	stable	equilibrium	and	stay	at	that	fixed	level,	as	we’ve
shown	with	our	example	on	here,	when	we	took	r	=	2.6.



Bifurcation	Points

Then,	May	observed,	increasing	the	system’s	sensitivity,	something	strange
happens:	oscillation.	Overpopulation	in	one	year	is	overcompensated	for	in	the
next,	leading	to	a	lower	population,	which	in	turn	allows	for	a	boom	back	to
higher	levels	the	year	after,	and	so	on.

The	pattern	then	repeats	every	two	years.

This	tendency	of	stable	orbits	to	split	in	two	at	certain	critical	“bifurcation
points”	as	a	parameter	in	a	system	changes,	is	known	as	period-doubling.	A



single	attractor	splits	in	two,	and	becomes	an	attractive	cycle	of	period	two.	This
can	be	represented	graphically	as	a	branching	line.



The	Period-Doubling	Cascade

But	it	doesn’t	stop	there.	Increasing	the	system’s	response	still	further	results	in
further	bifurcations:	the	cycle	of	period	two	changes	abruptly	to	one	of	period
four.	Each	branch	of	the	line	itself	branches	in	two.	This	successive	splitting	in
two	happens	faster	and	faster,	leading	rapidly	to	cycles	of	period	eight,	sixteen,



two	happens	faster	and	faster,	leading	rapidly	to	cycles	of	period	eight,	sixteen,
thirty-two	and	so	on	…



The	Fig	Tree

Like	Zeno’s	arrow,	these	bifurcations	get	closer	and	closer	together	until	they
accumulate	at	one	point,	known	as	the	Feigenbaum	point.	At	this	point,	the
system	converges	towards	an	infinite	cycle:	it	never	repeats	itself.	This	is	what
mathematicians	mean	by	a	chaotic	orbit.	This	remarkable	pattern	is	known	as
“the	fig	tree”.	We	think	you’ll	see	why.

This	repeated	doubling	is	known	as	the	period-doubling	cascade,	and	it	leads	to
chaos.	But	the	chaos	was	found	to	contain	within	it	seeds	of	order,	revealing	the
existence	of	windows	of	stable	periodic	behaviour	carved	out	of	a	wall	of	chaos.
The	largest	of	these	windows	represents	a	cycle	of	period	three.

Period	doubling	region	of	chaos	window	of	order



Can	we	show	a	window	of	stability?	Yes,	easily,	in	the	Feigenbaum	diagram.



Chaos	Theory	and	Fractals

Tien	Yien	Li	and	James	Yorke’s	1975	paper,	“Period	three	implies	chaos”,
contained	the	first	instance	of	this	usage	of	chaos	in	the	scientific	literature,	and
led	ultimately	to	the	creation	of	a	new	science,	chaos	theory.

Li	and	Yorke’s	results	were	startling.	They	showed	that	any	onedimensional
dynamical	system	with	a	cycle	of	period	three	also	contains	cycles	of	all	other
periods.	Alexei	Sarkowski	had	already	proved	the	main	result	in	a	stronger
form,	but,	as	he	wrote	in	Russian,	his	work	did	not	receive	due	attention	from	the
international	community.	In	fact,	Sarkowski	proved	the	existence	of	a	magic
sequence,	which	is	effectively	the	order	in	which	different	periods	arrive	on	the
fig	tree.



A	new	conception	of	chaos	arose.	Like	relativity,	the	uncertainty	principle	and
Kurt	Gödel’s	theorem,	chaos	theory	prescribes	limits	on	our	knowledge.	It	says
that	there	are	many	things	we	just	cannot	know.

However,	the	theory	has	some	very	positive	aspects.	It	implies	that	huge	changes
can	be	made	using	a	minimal	amount	of	effort.	Spacecraft	can	be	slung	around
the	solar	system	with	just	a	nudge	in	the	right	direction.	Your	life	can	be
radically	altered	by	just	the	smallest	exertion	of	will	at	just	the	right	time.



The	signature	of	chaos	is	the	fractal	attractor	–	fractals	are	the	patterns	of	chaos



The	Feigenbaum	Constant

Pursuing	the	themes	of	iteration	and	bifurcation,	in	1977	Mitchell	Feigenbaum
showed	that	the	ratio	of	distances	between	successive	bifurcations	converged
rapidly	to	a	constant,	4.669201660910	…

Powerful	vindication	of	the	importance	of	this	result	came	with	the	derivation	of
exactly	this	same	value	from	various	physical	laboratory	experiments.	The
universality	of	the	period-doubling	cascade	in	mathematics	led	some	theorists	to

To	my	amazement	I	found	this	number	was	independent	of	the	actual	system	I	studied



universality	of	the	period-doubling	cascade	in	mathematics	led	some	theorists	to
predict	its	occurrence	in	nature.	Still,	many	were	astonished	when	the	cascade
started	to	appear	in	real	physical	systems	as	diverse	as	acoustic	feedback	and
dripping	taps.	Period-doubling	is	a	general	principle	of	nature.

Physical	instances	were	revealed	in	labs	around	the	world.	And	when	the	rate	of
successive	doubling	was	measured,	experiment	after	experiment	showed
remarkable	numerical	agreement	with	Feigenbaum’s	number,	4.6692016	…

Feigenbaum’s	number	is	a	truly	universal	constant,	as	fundamental	as	π	(ratio	of
a	circle’s	circumference	to	its	diameter:	3.141592654…).	It	applies	just	as	much
in	the	real	world	as	it	does	in	computer	simulations.

It	appears	in	all	natural	phenomena	governed	by	a	one-humped	feedback
process.

In	the	Mandelbrot	set,	it	is	the	ratio	of	radii	of	successive	circles	on	the	real	line.



As	Ian	Stewart	says:	“Feigenbaum’s	discovery	of	universality	is	a	two-edged
sword.	It	makes	it	relatively	easy	to	test	a	particular	class	of	chaotic	models	by
experiment;	but	it	doesn’t	distinguish	between	the	different	models	in	that	class.”

Feigenbaum’s	discovery	turned	out	to	be	just	a	small	part	of	a	much	bigger
picture.	Feigenbaum	had	looked	only	at	iterations	of	the	logistic	equation	for	real
numbers.



When	Benoît	Mandelbrot	extended	Feigenbaum’s	work	to	this	wider	domain,	a
pattern	of	astounding	beauty	was	revealed.

That	is,	the	everyday	numbers	we	use	for	counting	and	quantifying	things	like	population	and	prices	but	mathematically	these	numbers	are	a	special	case	of	a	more	general	type	of	number



Complex	Numbers

Complex	numbers	are	generated	by	allowing	for	there	to	be	square	roots	of
minus	numbers.	This	is	not	something	we	encounter	in	our	day-to-day	lives.
There	are	no	minus	things	out	there	in	the	world	we	live	in.	Unless	you	count
dark	matter!	And	you	can’t	really	calculate	the	square	root	of	a	minus	entity.
Can	you?

Always	positive



Well,	in	maths	and	in	the	mind	you	can,	if	you	allow	for	imaginary	numbers!
The	square	root	of	minus	one	is	symbolised	by	the	letter	i.	The	complex	numbers
were	conceived	as	tools	for	solving	cubic	equations,	but	at	no	extra	cost	provide
solutions	to	any	equation	of	any	order.

They	express	deeper	patterns	of	reality	than	the	so-called	“real”	numbers	alone.
Complex	numbers	are	central	to	the	formulation	of	quantum	mechanics	and	the
description	of	oscillating	systems.	Let’s	now	see	how	complex	numbers	relate	to
fractals.



The	Complex	Plane

In	1685,	the	English	mathematician	John	Wallis	(1616–1703)	hit	upon	the	idea
of	representing	complex	numbers	graphically,	in	a	diagram.	The	imaginary
numbers	are	strung	out	at	right	angles	to	the	line	of	real	numbers,	also	known	as
the	real	line.	If	we	portray	real	numbers	as	lying	on	an	east/west	axis,	then
imaginary	numbers	lie	on	the	perpendicular	axis,	through	the	point	zero,	and	run
from	north	to	south.	This	creates	a	cross	–	a	co-ordinate	system,	where	all	the
real	numbers	are	placed	on	one	axis	and	all	the	imaginary	numbers	on	the	other,
with	a	general	point	in	the	plane	consisting	of	a	real	part	and	an	imaginary	part.



Arithmetic	operations	on	complex	numbers	correspond	to	geometrical
transformations	of	the	complex	plane.	Addition	is	equivalent	to	translation;
multiplication	to	scaled	rotation.



Length	of	uv	=	length	u	×	length	v	angle	of	uv	=	angle	of	u	+	angle	of	v



Gaston	Julia	and	Pierre	Fatou

During	the	First	World	War,	the	French	mathematicians	Gaston	Julia	(1893–
1978),	a	student	of	Henri	Poincaré,	and	Pierre	Fatou	(1878–1929)	studied	the
rational	mappings	of	the	complex	plane.

A	transformation,	or	mapping	of	the	plane,	is	a	rule	which,	given	any	point	in	the
plane,	provides	another.



plane,	provides	another.

It	can	be	thought	of	as	acting	simultaneously	on	the	entire	plane	…

…	picking	it	up,	stretching	it,	spinning	it,	or	twisting	it,	then	laying	it	down	flat
again.

Julia	and	Fatou	looked	in	particular	too	at	the	process	of	iteration.	Their	work
remained	largely	unknown,	even	to	most	mathematicians,	because	without
modern	computer	graphics	it	was	almost	impossible	to	communicate	their	subtle
ideas.

Self-similarity,	for	example,	was	well	known	to	Julia	and	Fatou.	The	mappings
Julia	studied	were	discrete,	yet	various	analogies	with	real	continuous	dynamical
systems	arose	naturally.



Repellors	created	basins	of	attraction,	much	like	falling	rain	has	to	find	its	way
into	one	river	or	another.	The	boundary	between	the	catchment	areas	was	made
up	of	repelling	points,	which	pushed	neighbouring	points	away.	These
boundaries	turned	out	to	be	very	complicated.	They	are	now	known	as	Julia	sets.

Julia	and	Fatou	never	actually	saw	a	Julia	set.	The	first	visualization	appeared	in
a	paper	published	in	1925.	This	was	the	closest	they	ever	came	to	seeing	the	full
flowering	of	their	work.

We	found	attractors,	points	in	space	which	pulled	all	the	surrounding	points	towards	them	and	we	found	repellors



It	was	not	to	be	until	the	advent	of	modern	computers	that	Julia	sets	could	be
seen	in	their	full	glory,	and	with	all	their	detail	exposed.

Hidden	behind	the	apparent	diversity	of	the	Julia	sets,	a	powerful	unifying
principle	was	waiting	to	be	discovered.	A	key	to	untold	mysteries.	A	sleeping
dragon.	Only	one	person	was	radical	enough	to	find	it.





Benoît	Mandelbrot

Mandelbrot	was	born	in	Warsaw	in	1924	to	a	relatively	wealthy	family.	His
father	was	a	successful	clothing	wholesaler	and	his	mother	a	well-respected
dentist.	They	were	Lithuanian	Jews.	When	Benoît	was	twelve,	his	family	had	the
foresight	to	quit	Poland.	Persecution	loomed	dark	and	heavy	over	them.	Paris
was	their	destination.



They	had	relatives	and	friends	in	Paris,	who	were	prepared	to	help	them	find
work	and	accommodation.

This	was	not	a	journey	we	made	out	of	choice,	but	it	was	the	right	one



Uncle	Szolem

Among	their	contacts	was	Benoît’s	Uncle	Szolem	Mandelbrot	–	a	mathematician
and	his	father’s	younger	brother.	Although	this	move	was	difficult	and	painful,	it
did	have	beneficial	and	lasting	repercussions	for	Benoît.	His	uncle	took	him
under	his	wing.	As	Mandelbrot	recalls:	“That	mathematics	is	a	living	organism
was	revealed	to	me	when	I	was	a	child	by	my	uncle	Szolem.	My	uncle	and	my
father,	you	can	say,	fought	for	my	soul.”



He	should	become	a	pure	mathematician	like	me	no,	an	engineer	my	father	who	was	very	prudent	thought	I	should	do	something	stable..	..	My	uncle	wanted	me	to	exercise	only	the	most	abstract	part
of	my	brain	in	the	end	they	both	won!



A	Practical	Education

When	Paris	fell	to	Nazi	Germany	in	1940,	the	Mandelbrots	fled	south.	Benoît
became	an	apprentice	tool-maker.	His	schooling	was	irregular	and
discontinuous.	He	never	actually	learned	the	alphabet,	nor	multiplication	past	the
fives	times	table!	His	practical	education,	though,	opened	his	eyes	to	forms
occurring	in	the	natural	world.





The	Shape	of	Things

The	cauliflower	fascinated	him	particularly.
He	noticed	that	when	you	break	off	a	branch	from	the	cauliflower,	the	small
piece	looks	just	like	the	whole	thing.

Then,	Benoît	discovered,	he	could	continue	to	break	off	smaller	and	smaller
branches	of	the	cauliflower	and	that,	up	to	a	certain	point,	they	continued	to	look
like	smaller	and	smaller	versions	of	the	whole	vegetable.



Mandelbrot	realized	early	on	that	he	would	be	a	mathematician.	He	also	knew
from	his	Uncle	Szolem	that	mathematics	was	a	real	occupation.

Back	in	Paris	after	the	war,	Mandelbrot	sat	–	and	passed	–	the	arduous	French
university	admissions	examinations	with	absolutely	no	preparation.	On	the
mathematical	sections	of	the	test	–	exercises	in	formal	algebra	and	integrated
analysis	–	he	managed	to	hide	his	lack	of	training	with	the	help	of	his

One	can	make	a	living	as	a	mathematician	most	people	can’t	imagine	that…	They	think	that	the	last	mathematician	was	Isaac	newton	or	even	Euclid!



analysis	–	he	managed	to	hide	his	lack	of	training	with	the	help	of	his
geometrical	intuition.

He	realized	that	he	had	the	ability	to	see	the	“shape”	of	an	analytical	problem
in	his	mind’s	eye.

Given	a	shape,	he	could	find	ways	of	transforming	it,	altering	symmetries,
creating	harmony.	Often	these	transformations	led	directly	to	a	solution	in
physics	and	chemistry.	But	where	he	could	not	employ	geometry,	he	did	not	fare
so	well.	Sitting	these	examination	papers	brought	home	again	to	Benoit	that
there	was	a	“mathematics	of	the	eye”,	that	visualization	of	a	problem	was	as
valid	a	method	as	any	for	finding	a	solution.	Amazingly,	he	found	himself
utterly	alone	with	this	conjecture.



The	Wiles	of	Bourbaki

The	teaching	of	mathematics	in	France	was	dominated	by	a	handful	of	dogmatic
mathematicians	hiding	behind	the	pseudonym	“Bourbaki”,	named	after	the	19th-
century	French	general,	Nicholas	Bourbaki.	It	was	an	inside	joke.	The	name
appealed	to	the	members	because	it	sounded	strange	and	attractive.	Although
Bourbaki	met	in	secret,	they	influenced	mathematical	thinking,	not	just	in
France,	but	throughout	Europe.

Pictures	were	considered	ephemeral	and	not	fit	for	the	rarefied	heights	of	pure
mathematics.	Pictures	could	lead	a	mathematician	astray.	Mandelbrot	was
unable	to	go	along	with	this	kind	of	thinking.	Bourbaki	represented	everything
he	abhorred	and	was	struggling	hard	to	avoid.	He	wanted	his	maths	–	his
geometry	–	to	explain	the	“real”	world.	He	yearned	for	a	true	description	of
nature	and	her	processes.

Mathematics	has	to	be	pure,	formal	and	austere	nothing	to	do	with	real	life	or	nature	and	no	pictures



On	the	Run	Again

He	married	and	left	France	for	the	USA	to	escape	the	ice-cold	grip	of	Bourbaki.
It’s	conceivable	that	without	the	insufferable	formalism	of	Bourbaki	to	kick
against,	Mandelbrot’s	restless	spirit	would	not	have	been	released	and	that	we
would	still	be	waiting	for	the	Mandelbrot	set	and	fractal	geometry!

The	stifling	hold	on	mathematical	imagination	pushed	Mandelbrot	away	from
academia	to	work	at	IBM	in	New	York.

Here	I	would	have	the	intellectual	freedom	no	university	could	grant	me



The	More	the	Merrier

IBM	gave	Mandelbrot	the	funding,	the	facilities,	a	research	team	that	included
Dr	Richard	Voss,	and	the	mental	space	in	which	to	work.	The	powers-that-be	at
IBM,	it	must	be	said,	had	vision	–	unlike	the	reactionary	management	of	the
mainstream	academic	world.	Looking	back,	Mandelbrot	observes	…



My	Reaction	To	That	now	Is	Let	Them	Live	It	Is	Not	A	Question	Of	Enforcing	Uniformity	There	Are	Different	Ways	Of	Doing	Things	Different	Ways	Of	Finding	Mathematical	Hypotheses	So	Let	Them
Live!	The	More	The	Merrier!



Emerging	Patterns

Drawing	his	inspiration	from	mathematical	mavericks	like	Richardson,	as	well
as	papers	rescued	from	other	mathematicians’	wastebaskets,	Benoît	Mandelbrot
formulated	the	new	science	of	fractal	geometry.

From	the	height	of	the	River	Nile	to	the	distribution	of	craters	on	the	moon,
wherever	he	looked	he	found	the	same	patterns	emerging.

Shapes	like	the	Cantor	set	and	the	Koch	curve,	far	from	being	exceptional,	are	in
fact	ubiquitous	in	the	physical	world.





Fractals	in	Practice

Variations	on	the	Cantor	set	occur	in	everything	from	frequencies	of	words	and
letters	in	language	to	noise	on	telephone	lines,	while	the	Koch	curve	serves	as	a
model	for	real	coastlines.	As	Mandelbrot	wrote	in	the	introduction	to	his
groundbreaking	book,	The	Fractal	Geometry	of	Nature	(1977)	…

The	number	of	distinct	scales	of	length	of	natural	patterns	is	for	all	practical
purposes	infinite.



Fractal	geometry	is	indeed	very	much	a	geometry	of	the	practical,	of	the	real
nuts-and-bolts	world.



Bad	Noise

Right	at	the	beginning	of	Mandelbrot’s	career	at	IBM,	he	tackled	a	practical
issue	which	directly	involved	and	concerned	his	employers.	Inside	the	company,
data	was	being	lost	or	corrupted	when	passing	between	computers	by	random
noise	bursts,	which	they	could	not	get	rid	of	or	predict.

He	applied	his	own	mathematics	and	came	at	the	problem	in	a	completely	new
way.

It’s	frustrating	and	costs	the	company	money	Hmm..	The	errors	seem	to	come	in	clusters



Fractal	Errors

Mandelbrot’s	solution	made	no	sense	to	IBM’s	engineers,	but	they	had	to	accept
that	the	mathematics	did	predict	that	it	was	just	not	possible	to	compute	the
average	rate	of	errors	over	any	period	of	time.

My	Calculations	Revealed	That	The	Errors	Were	Fractal	..	Self-Similar	At	All	Levels,	Continuing	To	Infinity..	The	Cantor	Set!



IBM	accepted	the	logic	in	good	faith	and	rebuilt	their	system	to	cope	with	the
errors.	They	introduced	a	level	of	redundancy	into	the	system,	which	would
cancel	out	the	interference.	The	maths	was	right.	Mandelbrot	could	explain	his
observations	mathematically.



A	General	Principle	Emerges

This	is	the	principle	behind	non-linear	dynamics.	Mandelbrot	was	beginning	to
grasp,	and	explain	mathematically,	the	way	things	work	in	the	real	world.	He
sensed	the	underlying	shape	of	things	–	the	hidden	order.

Why	Don’T	You	Read	The	Great	Papers	Julia	And	Fatou	Wrote	In	1917?	They	Are	Masterpieces





The	Simplest	Possible	Transformation

Mandelbrot	became	interested	in	the	Julia	set	of	the	simplest	possible
transformation:	z→z2+c.	This	formula	gives	a	rule	for	getting	one	complex
number	from	another,	or	in	other	words,	mapping	the	complex	plane	onto	itself.

The	effect	of	this	mapping	is	to	cut	the	plane	and	wrap	it	around	itself	while
stretching	it	away	from	the	unit	circle.



Mandelbrot	called	the	Julia	sets	generated	by	this	formula	“self-squared
dragons”.

The	Julia	sets	for	this	mapping	depend	only	on	the	value	of	the	parameter	c.
When	c	is	small,	they	are	simple	loops,	like	wrinkled	circles.	For	large	values	of
c,	the	fractal	consists	of	innumerably	many	discrete	points,	spread	out	and	dust-
like.





Two	Types	of	Julia	Sets

Generally,	the	Julia	sets	can	be	divided	into	two	main	types,	two	varieties.	They
can	be	either	wholly	disconnected	and	dust-like,	or	wholly	connected.	In	the
former	case,	the	sets	are	topologically	the	same	as	the	classic	Cantor	set.
With	the	connected	Julia	sets,	on	the	other	hand,	each	consists	of	a	succession	of
lines:	sometimes	a	single	closed	curve;	sometimes	loops	within	loops	within
loops;	and,	from	time	to	time,	a	dendrite.



On	the	boundary	between	these	two	regions	are	dendrite	Julia	sets,	made	up
completely	of	continuously	sub-branching	lines,	which	are	only	just	connected,
since	the	removal	of	any	point	from	them	would	split	them	in	two.

I	Was	Seeking	The	Pattern	Behind	This	Dichotomy	What	Is	The	Grand	Plan?	What	Separates	The	Joined-Up	Julia	Sets	From	The	Dust-Like	Ones?



He	and	his	team	spent	ages	churning	out	Julia	sets.
“It	was	extraordinary	great	fun!”

Disconnected	Connected



A	Map	of	Julia	Sets

In	1980,	Mandelbrot	hit	upon	the	fruitful	idea	of	making	a	map	of	this
behaviour.	He	coloured	a	point	on	the	map	black	if	a	Julia	sot	from	that	location
was	connected,	and	left	it	white	if	the	Julia	set	was	disconnected.	This	is	how	the
Mandelbrot	set	is	defined:	the	Mandelbrot	set	is	the	set	of	points	c	for	which	the
Julia	set	of	z→z2+c	is	connected.

If	c	is	in	the	Mandelbrot	set,	the	Julia	set	is	connected.

If	c	is	outside	the	Mandelbrot	set,	the	Julia	set	is	disconnected.

At	first	glance	this	seems	a	rather	complicated	problem,	but	Julia	had	devised	a
trick	for	finding	out	whether	or	not	a	Julia	set	is	connected	without	actually
constructing	the	set	itself.	If	the	orbit	of	the	starting	point	is	examined	and	found
to	go	to	infinity,	then	the	set	is	disconnected;	otherwise	it	is	connected.	With	this
insight,	a	simple	computer	program	can	find	out	to	which	class	a	Julia	set
belongs.



A	Whole	New	World

When	the	first	picture	of	the	set	rolled	off	the	printer,	Mandelbrot	and	his
colleagues’	first	reaction	was	that	there	must	be	some	mistake,	a	fault	in	the
program	perhaps.	The	picture	was	extremely	strange	and	unexpected.



Over	a	period	of	weeks,	working	late	into	the	night	in	the	basement	of	a
laboratory	in	Harvard	University,	Mandelbrot	and	his	assistant	explored	the
astonishing	new	world	they	had	discovered.	By	feeding	new	co-ordinates	into
their	program,	they	made	successively	deeper	zooms	into	the	boundary	of	the
set.

One	Of	The	Most	Striking	Discoveries	Was	That	Buried	Deep	Within	The	Seething	Froth	Of	The	Boundary	Were	Tiny	Replicas,	Almost	Identical	To	The	Original







These	consist	of	an	infinite	number	of	scaled-down	copies	of	one	Julia	set,
strung	on	spiral	strands	in	the	general	shape	of	another.

The	most	interesting	Julia	sets	are	the	ones	which	are	only	just	connected.	These
lie	on	the	border	between	the	connected	and	the	dust-like	sets	–	that	is,	on	the
boundary	of	the	Mandelbrot	set.

Likewise,	the	Mandelbrot	set	is	most	interesting	at	the	boundary.	The	Chinese
mathematician	Tan	Lei	proved	that	the	M-set	is	asymptotically	similar	to	Julia
sets	near	any	point	on	its	boundary.

The	M-Set	Converges	Towards	Julia	Sets



The	more	you	zoom	into	the	Mandelbrot	set,	the	closer	it	resembles	some
particular	Julia	set.	For	this	reason,	the	M-set	has	been	called	a	pictorial	index	of
Julia	sets.

All	the	patterns	found	in	such	julia	sets	are	found	on	the	edge	of	the	M-set



Simple	Rules,	Complex	Behaviour

Complex	phenomena	do	not	necessarily	require	complex	explanations.	This	is
the	essence	of	chaos	theory,	beautifully	conveyed	in	the	Lorenz	attractor.

A	very	simple	formula	like	Newton’s	law,	which	is	just	a	few	symbols,	can
explain	the	motion	of	the	planets	around	the	sun	and	many,	many	other	things	to
the	50th	decimal!

SIMPLE	RULES	PRODUCE	HIGHLY	COMPLEX	BEHAVIOUR



the	50th	decimal!



Newton’s	Law	and	Chaos

Although	Newton’s	law	describes	the	periodic	orbits	of	the	planets	in	the	solar
system,	it	also	implies	that	the	system	is	in	fact	chaotic	–	only	stable	in	the	short-
term.	In	this	case,	millions	of	years.

The	asteroid	belt	that	lies	between	Mars	and	Jupiter	is	clear	evidence	of	the
chaos	implied	by	Newton’s	law.	Saturn’s	rings	display	a	fractal	structure	akin	to
the	Cantor	set,	with	gaps	in	critical	regions	which	correspond	to	unstable	orbits.



It	Is	Impossible	To	Predict	The	Long-Term	Behaviour	Of	Any	System	Of	Three	Or	More	Bodies



Let’s	Admit	–	It	is	Complicated	…

The	Mandelbrot	set	is	used	as	evidence	for	mathematical	realism.	It	is	so
complicated,	the	argument	goes,	that	no	one	could	possibly	have	invented	it.
This	is	precisely	what	the	mathematician	Roger	Penrose	is	saying	when	he
emphasizes	the	reality	of	the	Mandelbrot	set.

The	Mandelbrot	set	is	so	intricate	that	no	computer	program	can	determine
whether	or	not	a	general	point	belongs	to	it.	In	some	sense,	it	is	not	computable.

The	Mandelbrot	Set	Is	Not	An	Invention	..	It’S	A	Discovery	Like	Mount	Everest	It’S	Just	There



The	further	you	zoom	into	the	Mandelbrot	set,	the	more	intricate	it	becomes.
Mitsuhiro	Shishikura	proved	in	1991	that	the	boundary	of	the	Mandelbrot	set
has	fractal	dimension	2.

No	one	knows	whether	the	set	is	locally	connected.	No	one	knows	the	exact	area
of	the	Mandelbrot	set,	though	it	is	known	to	be	around	1.50659177…	Massive
computational	power	has	been	expended	on	this	problem,	though	it	could	take	a
while	longer	before	anyone	actually	finds	a	use	for	the	result!	Nevertheless,	the
fact	that	the	Mandelbrot	set	exists	and	that	it	has	an	area	is	enough	for
mathematicians	of	the	Everest	school	to	attempt	the	challenge	–	because	it’s
there.	In	the	absence	of	any	better	ideas,	they	continue	to	chop	the	M-set	up	into
ever	smaller	boxes,	counting	them	all	up	to	arrive	at	ever	closer	estimates.
Convergence	is	very	slow,	and	it	has	been	suggested	that	maybe	the	boundary	of
the	M-set	has	positive	area,	though	no-one	knows	the	answer	to	this	either.



the	M-set	has	positive	area,	though	no-one	knows	the	answer	to	this	either.



Phase	Transitions

We	know	water	in	three	states:	ice,	liquid	and	vapour.	The	change	from	one	state
to	another	happens	abruptly,	at	certain	precise	temperatures	–	0	and	100	degrees
C.	This	is	the	essence	of	phase	transitions:	discontinuous	jumps	in	a	system’s
behaviour	as	a	parameter	crosses	critical	thresholds.	The	dynamics	of	phase
transitions	can	now	be	explored	with	computer	models.	Patterns	have	been	found
that	are	common	to	all	phase	transitions.

Two	German	mathematicians,	Heinz-Otto	Peitgen	and	Peter	H.	Richter,	were
investigating	a	model	of	magnetic	phase	transitions,	and	discovered	a	whole	new
family	of	fractals.	And	yet,	deep	within	the	fractal	bubbles	…



It	appears	again…	the	identity	is	astounding…	perhaps	we	should	believe	in	magic..



Hazy	Areas	of	Calculation

Isaac	Newton’s	method	for	solving	equations	by	successively	better	guesses	was
used	by	mathematicians	for	centuries	before	Arthur	Cayley	(1821–95)	noticed
that	between	different	solutions	lay	a	highly	complex	grey	area.

The	recurrence	of	the	Mandelbrot	set	in	a	wide	range	of	different	fractals	is	due
to	the	phenomenon	of	universality.	Wide	classes	of	different	systems	have
essentially	similar	attractors.	This	was	discovered	in	the	one-dimensional	case
by	Mitchell	Feigenbaum	in	1978,	using	just	a	pocket	calculator	and	plenty	of

A	Century	Later	Computer	Graphics	Revealed	That	This	Hazy	Area	Was	Also	Fractal	Within	It	Were	Copies	Of	Julia	Sets	And	Their	Orthogonal	Cousin	The	M-Set,	In	Perfect	Detail



by	Mitchell	Feigenbaum	in	1978,	using	just	a	pocket	calculator	and	plenty	of
stimulants!



The	Mathematics	of	Wrinkles

The	M-set	is	wrinkly	and	crinkly,	just	like	the	natural	world.	Before	fractal
geometry	there	were	no	tools	to	describe	this	aspect	of	the	world	we	experience.

Climbers	are	often	misled	by	the	lack	of	distinguishing	features	which	can	make
a	peak	appear	to	be	just	over	the	next	rise,	only	to	find	a	vast	chasm	between
them	and	the	top.

Any	part	of	a	mountain	resembles	the	whole.

A	frond	of	a	fern	looks	like	a	whole	fern.

This	is	the	fundamental	characteristic	behind	the	growth	of	all	complex
organisms.	The	same	forms	recur	in	many	different	circumstances,	in	different
materials	both	organic	and	inorganic,	on	a	vast	range	of	scales.	A	small	part	of
our	circulatory	system	looks	like	the	whole.	It	looks	like	a	tree,	like	an	estuary,
like	a	stream-bed.



Natural	Templates

Nature	finds	the	same	solution	to	many	different	problems,	like	how	to	drain
water	from	the	land	into	the	oceans,	and	how	to	get	blood	from	our	hearts	to	our
fingertips	and	back	again.	And	the	templates	that	nature	uses	are	fractals.	Clouds
look	the	same	at	all	scales.	It	is	impossible	to	determine	the	size	of	a	cloud	from
a	photograph	of	it.

Clouds	are	formed	by	the	condensation	of	tiny	droplets	of	water,	which	occurs
on	a	fairly	random	basis	under	suitable	conditions.	However,	once	these	are



on	a	fairly	random	basis	under	suitable	conditions.	However,	once	these	are
formed,	they	tend	to	attract	more	tiny	droplets	at	certain	points	around	them.
This	creates	the	necessary	conditions	for	a	fractal.



Forest	Fires:	the	Fractal	Boundary

Imagine	a	plantation	of	evenly	spaced	trees	on	a	very	hot,	dry	day.	As	the
temperature	soars,	the	odd	leaf	or	twig	ignites,	sending	a	whole	tree	up	in
flames.	This	is	an	essentially	random	process	–	the	factors	involved	are	beyond
our	powers	of	prediction.	But	once	a	tree	is	in	flames,	the	fire	easily	spreads	to
neighbouring	trees,	and	this	process	can	now	be	modelled	with	iterative
techniques.

The	Fire	starts	here



More	Phase	Transitions

This	principle	applies	just	as	much	to	the	spread	of	infectious	diseases	or
magnetic	polarity	as	to	forest	fires.	It	is	essentially	the	same	process	unfolding.

What	we	find	is	highly	sensitive	dependence	to	initial	conditions,	producing
phase	transitions.

Once	a	critical	threshold	is	passed,	the	fire	spreads	outwards,	the	disease
becomes	an	epidemic,	the	material	magnetic.



Electro-plated	Fractals

In	1983,	Thomas	Witten	and	Leonard	Sander	found	a	new	way	of	looking	at
how	deposits	build	up	in	the	electro-plating	process.	Their	work	led	to	a	new
model	called	“diffuse	limited	aggregation”,	or	DLA.	Computer	simulations
using	their	model	are	indistinguishable	from	the	real	thing.



They	remind	us	of	seaweed	and	the	patterns	produced	by	oil	in	water,	called
viscous	fingering.



Viscous	Fingering

In	the	classic	Hele-Shaw	experiment,	water	is	fed	through	a	small	hole	in	the
middle	of	a	flat	layer	of	oil	sandwiched	between	two	sheets	of	glass.

At	first	the	water	spreads	out	uniformly,	but	fairly	soon	the	increasing	straight
interface	between	the	two	fluids	becomes	unstable	and	breaks	into	fjord-like
fronds,	which	fan	outwards	in	a	fractal	manner	reminiscent	of	coral	or	plant
growth.



Both	have	a	fractal	dimension	around	1.7,	and	there	is	growing	evidence	that
they	are	mathematically	related.



Growth	by	Aggregation

Coral	grows	outward	by	aggregation.	That	is,	successive	deposits	of	material
attach	to	an	outward-growing	surface.	They	look	very	much	like	trees,	which
grow	outwards	by	branching	from	the	inside.	This	is	similar	to	snow	flakes
forming,	and	to	DLA	patterns.





Brownian	Motion	and	the	Quantum	World

Brownian	motion,	the	movement	of	a	tiny	smoke	particle	due	to	the	constant
bombardment	of	millions	of	invisible	air	molecules,	traces	a	fractal	path	with
dimension	close	to	2.





Dimensional	Magic

We	are	fractal.	Our	lungs,	our	circulatory	system,	our	brains	are	like	trees.	They
are	fractal	structures.

Fractal	geometry	allows	bounded	curves	of	infinite	length,	and	closed	surfaces
with	an	infinite	area.	It	even	allows	curves	with	positive	volume,	and	arbitrarily
large	groups	of	shapes	with	exactly	the	same	boundary.	This	is	exactly	how	our
lungs	manage	to	maximize	their	surface	area.

Most	natural	objects	–	and	that	includes	us	human	beings	–	are	composed	of
many	different	types	of	fractals	woven	into	each	other,	each	with	parts	which
have	different	fractal	dimensions.	For	example,	the	bronchial	tubes	in	the	human



have	different	fractal	dimensions.	For	example,	the	bronchial	tubes	in	the	human
lung	have	one	fractal	dimension	for	the	first	seven	generations	of	branching,	and
a	different	fractal	dimension	from	there	on	in.



The	Three-Quarter	Power	Law

Fractal	geometry	has	revealed	some	remarkable	insights	into	a	ubiquitous	and
mysterious	“three-quarter	power	law”.	This	particular	power	law	models	the	way
that	one	structure	relates	to	and	interacts	with	another.	It	is	based	on	the	cube	of
the	fourth	root.



For	a	long	time	now,	physiologists	have	had	an	empirical	understanding	of	how
much	blood	flows	through	our	circulatory	system,	and	how	this	relates	to	the
physical	size	of	the	vessels	that	carry	it.	Research	employing	fractal	rules	has
revealed	a	three-quarter	power	law	even	in	the	circulatory	system.

Our	arteries,	which	account	for	just	3	per	cent	of	our	bodies	by	volume,	can
reach	every	cell	in	our	bodies	with	nutrients.



The	arteries	that	deliver	the	blood,	and	the	veins	that	take	it	away,	need	to	share
a	common	interface	with	the	surface	of	the	lungs,	in	order	to	aerate	the	blood.
The	arteries	must	provide	every	cell	in	our	bodies	with	nutrients,	using	the
minimum	amount	of	blood.

The	kidneys,	the	liver,	the	pancreas	are	all	organs	constructed	along	self-similar
fractal	rules.	So	too	is	the	most	remarkable	organ	of	all	those	that	we	know	on
this	planet	–	the	human	brain.



The	Mysterious	Brain

One	thing	we	can	say	with	certainty	about	the	brain	is	that	it	is	a	very	fractal
piece	of	kit!	It	has	an	obvious	fractal	structure.	You	have	only	to	look	at	it	to	see
that.	It	is	very	crinkled	and	wrinkled	and	highly	convoluted,	as	it	folds	back	and
back	on	itself.

It	is	deeply	ironic	that	this	remarkable	organ,	which	is	the	seat	of	the	mind,	and
which	either	created	or	discovered	(we	don’t	know	which)	the	mathematical
rules	on	which	it	and	the	entire	universe	turns,	cannot	explain	or	understand	its
own	functioning.

There	Is	A	Natural	Evolutionary	Route	From	Universal	Mathematical	Patterns	In	The	Laws	Of	Physics	To	Organs	As	Complex	As	The	Brain



If	we	understood	how	our	brains	worked,	would	we	not	have	achieved	those
dizzying	heights	conjured	up	by	Stephen	Hawking	in	A	Brief	History	of	Time	–
would	we	not,	then,	“know	the	mind	of	God”?

Understanding	how	our	brains	function	is	probably	the	greatest	challenge	facing
the	scientific	community	at	this	time.	Fractal	geometry	is	at	the	leading	edge	of
research	in	this	area.

Our	Very	Awareness	–	The	Awareness	That	Constructs	And	Analyses	Fractals	And	Everything	Else-Continues	To	Remain	A	Mystery	To	Itself



Fractals	and	Medical	Research

All	aspects	of	nature	follow	mathematical	rules	and	involve	some	roughness	and
a	lot	of	irregularity.	For	example,	complex	protein	surfaces	fold	up	and	wrinkle
around	towards	three-dimensional	space	in	a	dimension	that	is	around	2.4.
Antibodies	bind	to	a	virus	through	their	compatibility	with	the	specific	fractal
dimension	of	the	surface	of	the	cell	with	which	they	intend	to	react.



Consequently,	many	of	the	current	developments	and	findings	in	fractal
geometry	are	in	work	with	surfaces.



Viruses	and	Bacteria

The	receptor	molecules	on	the	surfaces	of	all	viruses	and	bacteria	are	fractal.
Their	positioning	techniques,	the	methods	they	use	to	determine	the	chemistry	of
the	body	they	have	invaded	and	how	they	will	interfere	with	that	body’s
chemistry,	and	their	binding	functions,	emerge	mathematically	by	way	of	the
deterministic	rules	of	fractal	geometry.





AIDS

The	dynamics	of	the	AIDS	virus	in	the	human	body	has	been	modelled	with
fractal	geometry.	Fractal	geometry	provides	the	answer	to	the	long-standing
puzzle	surrounding	the	unusually	long	incubation	period	of	the	AIDS	virus.
Many	patients	remain	HIV	positive	for	as	long	as	ten	years	before	the	virus
decides	to	kick	in.	The	onset	of	the	full-blown	disease	does	reveal	itself	in	the
body.

As	the	immune	system	begins	to	fall	apart,	the	AIDS	virus	starts	to	behave
chaotically.	Studies	of	the	virus	at	this	stage	have	revealed	significant	changes	in
the	fractal	structure.



Fractal	geometry	unravels	the	structural	differences	that	occur	at	the	end	of	the
incubation	period	of	the	virus.



Detecting	Cancer

The	surface	structures	of	cancer	cells	are	crinkly	and	wrinkly.	These	convoluted
structures	display	fractal	properties	which	vary	markedly	during	the	different
stages	of	the	cancer	cell’s	growth.



Using	computers,	mathematical	pictures	can	be	obtained,	which	reveal	whether
or	not	cells	are	going	cancerous.	The	computer	is	able	to	measure	the	fractal
structure	of	cells.	If	cells	are	too	fractal,	it	spells	trouble.	There	is	something
wrong	with	those	cells.



Women	at	Risk

The	fractal	dimension	of	cancerous	material	is	higher	than	that	of	healthy	cells.
Alan	Penn,	who	is	Adjunct	Professor	of	Mathematics	and	Engineering	at	The
George	Washington	University,	describes	his	work	in	this	area.

Clinical	application	of	MRI	has	been	hampered	by	difficulty	in	determining
which	masses	are	benign	and	which	are	malignant.	Research	has	focused	on
developing	robust	fractal	dimension	estimates	which	will	improve	discrimination
between	benign	and	malignant	breast	masses.

Mri	Breast	Imaging	May	Improve	Diagnosis	For	The	4,000,000	Women	At	Risk	For	Whom	Mammography	Isn’T	Effective





Fractal	Beats

The	body	structures	of	all	of	nature’s	animals	are	fractal,	and	so	too	is	their
behaviour	(see	Orchid	Fractals)	and	even	their	timing.

Our	heart	beats	seem	regular	and	rhythmic,	but	when	the	structure	of	the	timing
is	examined	in	fine	detail,	it	is	revealed	to	be	very	slightly	fractal.	And	this	is
very	important.



If	The	Beats	Were	Regular,	The	Stresses	On	The	Heart	Would	Be	The	Same	On	Every	Beat



Practical	Solutions

In	the	early	days,	Benoît	Mandelbrot	found	the	most	enthusiastic	responses	to
his	ideas	among	applied	scientists	working	in	practical	fields	–	with	oil,	rocks	or
metals.	Now	all	that	has	changed.

Fractals	have	become	a	mainstay	in	the	study	of	the	structures	of	polymers	and
ceramic	materials,	and	in	tackling	the	more	unsavoury	problems	of	nuclear
reactor	safety.



Several	Multi-National	Giants	Around	The	World	Have	Dedicated	Teams	Devoted	To	Solving	Problems..	Using	Fractal	Geometry



Striking	Oil

A	fresh	and	novel	approach	to	a	variety	of	geological	and	geophysical	problems
using	the	derivation	of	the	fractal	dimension	of	sand-shale	sequences,	fault
patterns,	deltas	and	channel	systems	is	now	in	place	and	proving	useful.

A	Great	Deal	Of	Information	Lies	In	The	Horizontal	Section	Of	Fault	Patterns	..It	is	Possible	to	Correlate,	Compare,	Verify	And	Even	Date	Them	Analysis	of	Their	Varying	Lengths,	Of	How	They
Cluster	And	Connect–	Reveals	Fractal	Properties



The	fractal	content	of	2-D	images	of	fault	patterns	has	resulted	in	the
representation	of	such	images	by	relatively	few	equations,	which	are	then
iterated.	The	decomposition	of	2-D	images	to	much	smaller	amounts	of	data
than	would	be	required	to	represent	the	pixels,	and	their	subsequent
recomposition	is	vital.	The	possibility	of	recomposing	the	2-D	image	at	greater
resolution	leads	to	the	exciting	possibility	of	fault	prediction	even	below	the	limit
of	seismic	resolution.



The	Spring	is	Sprung

High	wastage	has	always	been	an	intractable	and	irritating	problem	for	the
spring	industry	throughout	the	world.	10	per	cent	of	spring	wire,	which
compares	favourably	with	other	wires	in	appearance,	with	consistent	strength
and	malleability,	will	not	make	springs.	And	the	reason	for	this	is	the	fractal
structuring	of	the	molecules	within	the	wire.



Testing	a	coil	of	wire	previously	took	up	to	three	days;	now,	using	fractal
geometry,	the	time	has	been	reduced	to	just	three	minutes!	This	constitutes
enormous	savings	and	greatly	increased	efficiency	to	the	spring	industry.

This	technology	has	also	found	grateful	acceptance	in	processes	where	strength
and	malleability	are	of	the	utmost	importance.	It	is	in	use	now	in	the	jewellery
and	fibre-optics	industries,	where	researchers	have	found	fractal	fibres,
consisting	of	fibres	of	fibres,	to	be	the	most	optically	efficient.



Stress	Loadings

Statistical	models	using	fractal	geometry	are	in	use	testing	for	stress	loading	on
oil	rigs	and	on	aircraft	in	turbulence,	with	particular	emphasis	on	the	effects	of
very	short	gusts	of	wind.

Aerials

Fractal	structures	have	now	been	found	to	provide	the	most	effective	shapes	for
mobile	phone	aerials.



Detection

Fractal	geometry	has	been	used	effectively	by	the	military	for	the	detection	of
man-made	features	in	natural	environments.	This	geometry	has	proved	to	be
remarkably	effective	in	finding	and	tracking	submarines	or	the	wake	of	ships.



At	Queens	University	in	Belfast,	Avian	Alexander	has	developed	a	fractal
database	of	shoe-prints	which	removes	the	subjective	element	of	identification
for	forensic	scientists.



Fractal	Ecology

Fractal	geometry	is	a	new	mathematical	language.	We	all	see	fractals	every	day,
everywhere	we	look.	They	are	already	very	familiar	to	us.	So	it	is	not	surprising
that	fractal	geometry	is	finding	a	host	of	applications	in	the	study	and	the
management	of	our	environment.	Acid	rain	is	a	prime	example.



Earthquakes	show	up	with	a	clearly	fractal	signature,	as	do	epidemics	in	the
human	species.

Rainfall	Is	Fractal,	So	Pollutants	Can	Be	Tracked



Corrosion	reveals	the	fractal	nature	of	the	process,	suggesting	ways	and	means
to	alleviate	the	problem.

Self-similarity	on	all	scales	is	a	key	factor	in	understanding	and	describing	nature’s	phenomena	Epicentres	of	earthquakes	richter	4.5	or	more



Orchid	Fractals	and	Crowds

Fractal	geometry	is	now	used	in	the	modelling	of	crowd	flow.	Our	behaviour	en
masse	has	turned	out	to	be	fractal.	G.	Keith	Still’s	work	has	led	to	some
unexpected	revelations	about	human	crowd	behaviour	and	how	to	manage
crowds.



In	a	crowd	our	focal	point	becomes	the	bubble	of	our	own	space	and	what	little
we	can	detect	beyond	that.	Running	crowd-flow	computer	simulations	produce
extraordinarily	beautiful	patterns,	which	because	of	their	fractal	nature,	have
structure	on	all	scales.	And,	again	these	patterns	appear	organic.	They	are	also
very	beautiful.



Flow	simulations	very	often	closely	resemble	floral	patterns	like	orchids.	Still’s
work	is	used	in	stadium	design	and	in	the	intricate	modelling	of	ecosystems.



Olbers’	Paradox

One	of	the	most	beautiful	fractals	in	nature	is	the	night	sky.	Wherever	you	look,
there	is	a	star.	Between	any	two	stars	there	are	always	other	stars.	In	1826,
Wilhelm	Olbers	argued	that	in	a	large	enough	universe,	the	sky	ought	to	be
uniformly	bright.

Why	Is	The	Sky	Dark	At	Night?	The	Entire	Sky	Should	Be	As	Bright	As	The	Sun



Since	luminosity	decreases	with	the	square	of	the	distance,	and	so	does	apparent
size,	the	total	amount	of	light	coming	from	any	direction	in	space	ought	to	be	the
same.

Back	in	1909,	Jac	Fournier	suggested	a	model	to	tackle	this	problem	of	the
distribution	of	matter	in	the	universe.	He	said:	take	five	points,	arranged	in	a
square	with	one	in	the	middle.	Replace	each	point	with	a	scaled-down	copy	of
the	whole	pattern.	Don’t	stop	there!	Keep	going,	replacing	each	point	of	this	new
diagram	with	a	smaller	duplicate	of	the	whole	shape.	And	so	on	…



In	the	limit,	you	are	left	with	a	Fournier	fractal.	Although	highly	simplified,	it
shows	that	an	infinite	universe	need	not	be	equally	bright	in	all	directions,	if	it
has	a	fractal	structure.



The	Great	Wall

Planets	clump	together	to	form	solar	systems.	The	stars	fit	together	to	form
clusters	of	stars.	Clusters	of	stars	gather	together	to	form	galaxies	Galaxies	hang
together	to	form	clusters.	These	clusters	go	on	to	make	super-clusters.



In	1986,	astronomers	discovered	that	some	galactic	clusters	are	composed	of
vast	agglomerations	of	matter	a	billion	light	years	across.	In	1989,	a	huge	sheet
of	galaxies	known	as	The	Great	Wall	was	discovered	by	John	Huchra	and
Margaret	Geller	at	the	Harvard-Smithsonian	Center	for	Astrophysics.

The	real	geometry	of	the	universe	in	three	dimensions	is	like	a	foam.	All	of	the
matter	in	the	universe	–	the	stars,	the	planets	and	all	the	other	bits	(known	and,
probably,	unknown)	–	is	on	the	bubbles	in	the	foam.	In	between	the	galactic
clusters	there	are	huge	voids	with	absolutely	nothing	at	all	in	them.



Using	fractals,	researchers	can	now	model	the	evolution	and	the	structure	–	even
the	fate	–	of	interstellar	dust	clouds.

The	Foam-Like	Structure	of	the	Universe	Is	Fractal	It	is	the	Same	On	All	Scales	It	Does	Not	Smooth	Out	–	Ever



The	Big	Bang

The	universe	has	turned	out	to	be	fractal	on	scales	up	to	100	million	light	years,
with	a	fractal	dimension	between	1	and	2.	Now	that	we	know	that	it	is	fractal	on
all	observable	scales,	cosmologists	can	reconsider	in	this	new	light	one	of	the
major	problems	surrounding	the	“Big	Bang”	theory	of	the	universe.



The	Greek	letter	omega	represents	the	ratio	between	the	observed	cosmic	mass
density	and	the	critical	density	that	would	cause	gravity	to	collapse	the	universe
back	in	on	itself.	It	turns	out	that	the	universe	is	critically	poised,	its	omega
equal	almost	exactly	to	1.	It’s	“flat”.

Many	cosmologists	and	physicists,	including	Stephen	Hawking	and	his
colleagues,	have	admitted	that	a	universe	with	an	omega	equal	to	1	poses
enormous	problems	for	the	Big	Bang	model.

There	are	many	other	issues	around	the	Big	Bang	theory,	which	still	require
resolving.	Hannes	Alfvén,	the	Swedish	Nobel	Laureate	and	originator	of	the
Plasma	Theory	of	cosmology,	has	put	it	this	way.

There	is	nothing	to	indicate	that	the	universe	is	open	or	closed



A	Big	Bang	Would	Certainly	Produce	An	Expansion..	But	An	Expansion	Wouldn’t	Necessarily	Require	A	Big	Bang	Just	Because	All	Dogs	Are	Animals,	It	Doesn’t	Mean	All	Animals	Are	Dogs



Cosmic	Connections

Just	as	fractal	geometry	is	now	enabling	cosmologists	to	throw	new	light	on
these	ticklish	problems,	the	latest	versions	of	the	inflationary	Big	Bang	theory
imply	that	the	universe	is	in	fact	a	self-generating	fractal,	endlessly	creating
other	universes	out	of	itself.	This	would	indicate	that	it	is	not	just	the	structure	of
the	universe	that	is	fractal,	but	its	evolution	as	well.



In	this	inflationary	theory,	a	chain	reaction	gives	birth	to	a	fractal	structure	of
universes	within	universes.	In	this	case,	there	would	be	no	end	to	evolution	on
all	scales.



How	Do	We	See?

Our	brains	produce	images	of	far	higher	resolution	than	the	signals	recorded	by
our	eyes.	Retinal	resolution	is	limited	by	the	quality	of	the	image	provided	by
the	lens	and	the	cornea,	by	the	wave	nature	of	light	itself	(in	the	same	way	that
the	resolution	of	a	telescope	is	limited),	and	by	the	separation	and	size	of	the
photoreceptors	which	pick	up	the	image.



We	Are	Constantly	Filling	In	Details	From	Past	Experience	–	From	What	The	Brain	Knows	–	To	Complete	The	Incomplete	Evidence	Of	Our	Current	Experience	Innovative	Mathematics	Can	Mimic
Our	Minds	By	Capturing	The	Fundamental	Patterns	Of	Nature



Fractal	Image	Compression

Michael	Barnsley	believes	that	our	visual	cortex	uses	some	kind	of	fractal
algorithm	to	optimize	sensitivity	to	important	features	and	details	in	our	visual
field.

Using	a	sophisticated	computational	method,	Barnsley	has	developed	a	form	of
image	compression	which	can	shrink	images	to	a	fraction	of	their	size,	and	then
blow	them	up	to	any	size	without	pixellation.



A	team	of	scientists	at	the	Georgia	Institute	of	Technology,	led	by	Barnsley,
discovered	a	method	for	reproducing	even	very	complicated	forms	realistically
by	a	process	called	“affine	transformations”,	which	looks	like	the	original.

Fractal	image	compression	can	even	guess,	by	interpolation,	what	lies	outside	the	frame	of	a	picture



Real-world	images	have	redundant	information.	Tree	bark	has	repeating	patterns	with	small	variations	..it	can	look	like	other	sections	of	the	bark



The	process	of	rotating,	stretching,	and	moving	is	called	an	affine
transformation.

Any	affine	transformation	can	be	expressed	in	mathematical	terms	with	just	a
few	numbers,	called	an	affine	map.	These	numbers	are	coefficients	that	are
plugged	into	a	standard	equation.



Morphogenesis

The	implications	that	affine	transformations	might	have	for	morphogenesis	(the
way	form	develops	in	living	organisms)	in	the	real	world	are	yet	to	be	explored.
But	in	immediate	practical	terms,	scientists	are	hoping	that	these	transformations
will	allow	them	to	derive	efficient	ways	to	store	complex	data	in	digital	memory,
transmit	photographs	over	phone	lines,	and	simulate	natural	scenery	by
computer.





Satellites

Weather	satellites	have	been	in	operation	and	providing	us	with	useful	data	for
decades.	The	spy	or	reconnaissance	satellites	which	patrol	the	earth	produce
images	of	areas	of	specific	military	interest	with	literally	thousands	of	times	the
definition	of	the	weather	satellites!	These	satellites	are	required	to	transmit
enormous	amounts	of	data	to	the	ground.



The	Money	Markets

Fractals	have	turned	out	to	be	just	as	ubiquitous	in	economics	as	in	the	natural
sciences.	Benoît	Mandelbrot	published	his	most	recent	work	in	1998.	It	is	called
Fractal	and	Scaling	in	Finance:	Discontinuity,	Concentration,	Risk.	It	is	another
dense	and	impressive	book.	And,	as	with	his	other	works,	it	is	very	challenging.
Built	on	his	previous	deep	insights,	it	engages	a	new	world	of	mathematical
problems.	It	was	reviewed	by	the	Scientific	American	under	the	front	page
banner	headline:	A	FRACTAL	WALK	DOWN	WALL	STREET	…







What	Are	the	Rules?

Mandelbrot	had	always	been	convinced	that	his	researches	had	shown	that
probability,	statistics	and	fractal	geometry	could	really	help	describe
mathematically	what	goes	on	in	markets.	There	were	underlying	rules	to	be
uncovered	and	unmasked.

An	extensive	mathematical	basis	already	exists	for	fractals	and	multifractals.
Fractal	patterns	appear	not	just	in	the	price	changes	of	securities	but	in	the
distribution	of	galaxies	throughout	the	cosmos,	in	the	shape	of	coastlines	and	in
the	decorative	designs	generated	by	innumerable	computer	programs.	A	fractal
is	a	geometric	shape	that	can	be	separated	into	parts,	each	of	which	is	a	reduced-
scale	version	of	the	whole.





In	finance,	this	concept	is	not	a	rootless	abstraction	but	a	theoretical
reformulation	of	a	down-to-earth	bit	of	market	folklore	–	namely,	that
movements	of	a	stock	or	currency	all	look	alike	when	a	market	chart	is	enlarged
or	reduced	so	that	it	fits	the	same	time	and	price	scale.	An	observer	then	cannot
tell	which	of	the	data	concern	prices	that	change	from	week	to	week,	day	to	day
or	hour	to	hour.	This	quality	defines	the	charts	as	fractal	curves	and	makes



or	hour	to	hour.	This	quality	defines	the	charts	as	fractal	curves	and	makes
available	many	powerful	tools	of	mathematical	and	computer	analysis.



Market	Self-Affinity

A	more	specific	technical	term	now	for	this	resemblance	between	the	parts	and
the	whole	is	self-affinity.	This	property	is	related	to	the	most	commonly-known
facet	of	fractal	geometry,	which	we	have	already	discussed	–	self-similarity	–	in
which	every	feature	of	an	image	is	shrunk	or	expanded	by	exactly	the	same	ratio.
Financial	market	charts,	however,	are	–	as	we	all	know	only	too	well	–	a	long,
long	way	from	being	self-similar.





In	a	detail	of	a	graphic	in	which	the	features	are	higher	than	they	are	wide	–	as
are	the	individual	up-and-down	price	ticks	of	a	stock	–	the	transformation	from
the	whole	to	a	part	must	reduce	the	horizontal	axis	more	than	the	vertical	one.
For	a	price	chart,	this	transformation	must	shrink	the	time-scale	(the	horizontal
axis)	more	than	the	price	scale	(the	vertical	axis).	The	geometric	relation	of	the
whole	to	its	parts	is	said	to	be	one	of	self-affinity.	The	existence	of	unchanging
properties	is	not	given	much	weight	by	most	statisticians.	But	they	are	beloved	of
physicists	and	mathematicians	like	myself,	who	call	them	invariances	and	are
happiest	with	models	that	present	an	attractive	invariance	property.	A	good	idea
of	what	I	mean	is	provided	by	drawing	a	simple	chart	that	inserts	price	changes
from	time	0	to	a	later	time	1	in	successive	steps.	The	intervals	themselves	are
chosen	arbitrarily;	they	may	represent	a	second,	an	hour,	a	day	or	a	year.



Generators

The	process	begins	with	a	price,	represented	by	a	straight	trend	line.	Next,	a
broken	line,	which	Mandelbrot	calls	a	generator,	is	used	to	create	the	pattern,
which	corresponds	to	the	up-and-down	oscillations	of	a	price	quoted	on	the
financial	markets.







Beyond	Portfolio	Theory

A	few	selected	generators	yield	so-called	unifractal	curves	that	exhibit	the
relatively	tranquil	picture	of	the	market	encompassed	by	modern	portfolio
theory.	But	tranquillity	prevails	only	under	extraordinarily	special	conditions
that	are	satisfied	only	by	these	special	generators.	The	assumptions	behind	this
oversimplified	model	are	one	of	the	central	mistakes	of	modern	portfolio	theory.
It	is	much	like	a	theory	of	sea	waves	that	forbids	their	swells	to	exceed	six	feet.
The	beauty	of	fractal	geometry	is	that	it	makes	possible	a	model	general	enough
to	reproduce	the	patterns	that	characterize	portfolio	theory’s	placid	markets	as
well	as	the	tumultuous	trading	conditions	often	encountered.



Multifractals

The	just	described	method	of	creating	a	fractal	price	model	can	be	altered	to
show	how	the	activity	of	markets	speeds	up	and	slows	down	–	the	essence	of
volatility.	This	variability	is	the	reason	that	the	prefix	“multi-”	was	added	to	the
word	“fractal”.

Mandelbrot	maintains	that	probability,	statistics	and	fractal	geometry	can	and
will	help	describe	what	goes	on	in	the	money	markets.



Fractals	in	Art:	Mandalas

As	Mandelbrot	himself	has	pointed	out:	“There	is	something	familiar	about
fractals.	I	had	this	experience	immediately:	that	when	I	first,	first	saw	them,	I
was	the	first	person	to	see	them!	There	was	absolutely	no	way	anybody	could
have	seen	them	before.	Yet,	after	a	few	days,	or	sometimes	a	few	hours,	even	a
few	minutes,	they	became	almost	familiar.	I	was	finding	features	in	them,	which
I	had	seen	somewhere.	So	where	had	I	seen	them?	Well,	first	of	all	in	natural
phenomena,	but	also	certainly	in	art.”

Zooming	into	the	boundary	of	the	M-set,	we	find	smaller	and	smaller	island
molecules,	surrounded	by	increasingly	intricate	circular	patterns,	evocative	of
Oriental	art,	particularly	in	the	meditative	designs	of	Buddhism	known	as
mandalas.



In	Mahayana	Buddhism,	the	fractal	nature	of	reality	is	illustrated	in	the
Avatamsaka	Sutra	by	the	metaphor	of	Indra’s	net,	a	vast	network	of	precious
gems	hanging	over	the	palace	of	the	god	Indra,	so	arranged	that	if	you	look	at
one	you	see	all	the	others	reflected	in	it.

We	know	that	different	regions	in	the	brain	process	shape,	colour	and	motion.
Benoît	Mandelbrot	has	hypothesized	that	perhaps	there	is	a	specific	circuit	in	the
brain	to	deal	with	fractal	complexity.

In	every	particle	of	dust	there	are	present	buddhas	without	number



Decorative	Patterns:	Self-Similarity

The	abstract,	curvilinear	motifs	of	ancient	Islamic	decorative	art	found	in
mosaics	and	carpet	design	appear	again	and	again	at	all	scales	of	magnification
on	the	boundary	of	the	Mandelbrot	set.

Arthur	C.	Clarke	thinks	that	it	may	be	just	a	coincidence,	“but”,	he	writes,	“the
Mandelbrot	set	does	indeed	seem	to	contain	an	enormous	number	of	mandalas	or
religious	symbols,	which	are	found	in	ecclesiastical	designs	–	such	as	stained
glass	windows,	and	particularly	in	Islamic	art.	We	find	many	forms	like	the
Paisley	pattern	echoing	the	Mandelbrot	set	centuries	before	it	was	discovered!”



Fractal	shapes	were	being	expressed	intuitively	by	artists	long	before	they	were
recognized	in	science.	Self-similar	patterns	appear	in	Celtic	artefacts,	like	the
spirals	and	circles	within	circles	of	the	exquisitely	crafted	illuminated	pages	of
the	early	9th-century	Book	of	Kells	and	the	Densborough	mirror	made	in	the	1st
century	AD.	Mathematical	awareness,	particularly	fractal	awareness,	reveals
itself	in	the	art	of	the	Romans	and	the	Egyptians,	and	in	the	work	of	the	Aztec,
Inca	and	Mayan	civilizations	of	Central	and	South	America.	Shapes	highly
reminiscent	of	the	Koch	curve	were	used	to	depict	waves	by	the	Hellenic	artist	in
a	frieze	in	the	ancient	Greek	town	of	Akrotiri.





Scaling	and	Repetition

“The	Great	Wave”	at	Kanagawa	by	the	Japanese	artist	Katsushika	Hokusai
(1760–1849)	and	Leonardo	da	Vinci’s	(1452–1519)	“Deluge”	portray	a
profound	sensitivity	to	the	dynamics	of	water,	with	its	ever-diminishing	detailed
repetition.



One	of	mathematician	Ian	Stewart’s	favourite	works	of	art	is	Hokusai’s	woodcut
“Waterfall	in	Yoshino”,	in	which	“the	central	form	is	a	claw	shape,	which



appears	at	various	scales	and	in	numerous	transformations	–	in	the	vegetation,	in
the	water,	in	the	rocks,	in	the	horse	and	in	the	two	straining	men.	This	recurring
form	provides	a	sense	of	unity,	diversity	and	wholeness	to	the	work.”

In	more	recent	times,	Salvador	Dali	(1904–89)	and	M.C.	Escher	(1898–1972)
have	both	exploited	the	idea	of	shapes	containing	copies	of	themselves.	The



paintings	of	the	Abstract	Expressionist	Jackson	Pollock	(1912–56)	can	be
reliably	dated	just	from	their	fractal	dimension.



Cues	in	the	Landscape

Art	is	about	those	things	which	we	do	not	always	immediately	recognize	or
understand.	The	artist	helps	us	to	see	things	more	clearly,	revealing	previously
hidden	patterns	to	us.	Art	is	fractal.	Art	reflects	and	expresses	the	fractal	nature
of	our	conscious	perceptions	of	the	world,	as	interpreted	by	our	fractal	brains.

Bill	Hirst,	the	British	scientist	and	photographer,	wrote:	“If	you	remove	cues
like	the	horizon	from	a	landscape	scene,	it	becomes	difficult	to	tell	if	you’re
looking	at	pebbles	or	rocks	or	hills”.

“There	was	something	there	I	wanted	to	understand.	It	wasn’t	about	order	and
chaos,	but	something	in	between.	Then	it	came	to	me	in	a	flash	–	it	was	about
fractals!”





Fractals	in	Music

Spectral	analysis	of	music	from	classical	to	nursery	rhymes	has	revealed	a
remarkable	affinity	with	patterns	in	nature,	in	particular	a	fractal	distribution
called	1/f	noise,	which	is	found	in	the	sound	of	a	waterfall	or	waves	crashing	on
a	beach.

All	music	from	Bach	to	the	Beatles,	even	birdsong,	is	characterized	by	1/f	noise,
displaying	the	same	dynamic	balance	between	predictability	and	surprise,

1/f	noise	lies	midway	between	the	total	chaos	of	white	noise	.	.	.	.	And	overly-correlated	brown	noise



displaying	the	same	dynamic	balance	between	predictability	and	surprise,
between	dull	monotony	and	random	discord.	Seen	in	this	light,	music	is
essentially	a	simulation	of	the	harmony	in	nature.



It	is	entirely	conceivable	that	the	low	level	of	fractal	complexity	in	modern	inner
cities	is	a	strong	contributing	factor	to	the	high	incidence	of	depression	reported
in	these	kind	of	environments.

These	modern	buildings	–	office	blocks,	tower	blocks,	factory	blocks	–	never
actually	function	in	the	true	sense	of	the	word.	They	do	not	work	in	the	role	for
which	they	were	intended.	They	become	objects	of	loathing	and	derision.	They

A	mies	van	der	rohe	building	is	a	scale-Bound	throwback	to	euclid.	.	.	.	While	a	high	period	beaux	arts	building	is	rich	in	fractal	aspects



which	they	were	intended.	They	become	objects	of	loathing	and	derision.	They
get	abused.	They	get	uglier	and,	in	a	downward	spiral,	even	less	“useful”.



Organic	Architecture

The	unfinished	cathedral	by	Antonio	Gaudí	(1852–1926)	in	Barcelona	is	a
stunning	example	of	fractal	architecture.	It	is	organic.	It	is	rich	in	detail.	It	is
expressive.	It	is	interactive	and	riveting.	Its	whirling,	twirling	curves	and
detailed	branchings	cry	“fractal”!	The	building	looks	almost	alive.	This	organic,
fractal	quality	is,	of	course,	thematic	throughout	Gaudí’s	work.





Fractal	Traditions

The	same	can	be	said	of	the	Paris	Opera	House	(1875),	with	its	intricately
detailed	baroque	carvings.



Gothic	cathedrals	and	churches	are	for	the	most	part	excellent	examples	of	the
fractal	thread	running	through	the	highest	architectural	vision	of	mankind.	The
fine	detail,	the	self-similar	features	which	scale	down	throughout	the	buildings,
reflect	the	living	world	and	give	these	buildings	a	life	and	warmth	not	found	in



reflect	the	living	world	and	give	these	buildings	a	life	and	warmth	not	found	in
today’s	utilitarian	architecture.



Strength	in	the	Details

Architecture	is	an	expression	of	the	human	mind	as	a	utility	and	also	as	a	work
of	art.	Classical	architects	paid	great	attention	to	detail	on	all	scales	and	to	the
way	their	buildings	flowed.

There	is	strength	in	fractals.	A	fractal	lattice	structure	provides	the	maximum
strength	for	any	given	weight	of	material.



Fractal	drums	make	little	sound.	This	is	because	fractal	shapes	are	the	most
effective	in	damping	oscillations,	suggesting	that	they	might	also	be	more	robust
than	other	shapes.

Fractal	details	are	actually	more	useful	than	the	functionalist	straight	lines	of	modernism	Look	at	the	Eiffel	tower	of	1889	.	.



Fracology

Ethnographers	have	recently	uncovered	evidence	that	traditional	African
societies	are	modelled,	albeit	subconsciously,	on	fractal	forms.	Aerial	photos	of
traditional	African	settlements	reveal	clear	fractal	structure	in	the	branching	of
streets,	and	in	the	recursive	rectangular	enclosures	and	circular	dwellings.



“Recursive	scaling	structures	can	also	be	found	in	other	areas	of	African	culture
–	in	art,	religion,	indigenous	engineering,	even	in	games.	In	the	design	rationales
and	the	cultural	semantics	of	many	of	these	geometric	forms,	there	are	abstract
ideas	and	formal	structures	that	closely	parallel	some	of	the	fundamental	aspects
of	fractal	geometry.	These	results	agree	with	recent	developments	in	complex
systems	theory	too,	which	suggest	that	pre-modern,	non-state	societies	were
neither	utterly	anarchic,	nor	frozen	in	static	order,	but	in	reality	used	an	adaptive
flexibility,	which	took	full	advantage	of	fractal	geometry	and	of	the	non-linear



flexibility,	which	took	full	advantage	of	fractal	geometry	and	of	the	non-linear
aspects	of	ecological	dynamics.”



Quo	Vadis?

From	1975,	when	Mandelbrot	coined	the	word	fractal,	to	1980,	the	word
appeared	in	just	a	handful	of	academic	papers.	By	1990,	there	were	5,000	papers
a	year	published	with	the	word	“fractal”	in	the	title.

Here	was	a	new	tool	that	could	be	used	across	the	board	of	science,	though
perhaps,	as	Leo	Kadanoff	of	the	University	of	Chicago	has	mooted:	“Despite
the	beauty	and	elegance	of	the	phenomenological	observations	upon	which	the
field	is	based,	the	physics	of	fractals	is,	in	many	ways,	a	subject	waiting	to	be
born.	One	might	hope,	and	even	suspect	that	eventually	a	theoretical
underpinning	will	be	developed	to	anchor	this	subject.”

It’s	early	days	yet,	but	asked	if	fractals	are	going	anywhere,	Arthur	C.	Clarke
retorted	…

I’m	often	asked,	well,	these	pictures	are	all	very	pretty.	.	.	.	But	what’s	their	practical	value?	I’m	tempted	to	answer	in	the	famous	words	of	faraday,	when	he	has	asked	what	use	were	his	games	with
wires	and	magnets	.	.	What	use	is	a	new-Born	baby?



Not	Everyone	Agrees	…

In	a	recent	and	scathing	article	in	The	Mathematical	Intelligencer,	Steven	G.
Krantz	of	the	University	of	California	at	Santa	Cruz	wrote	that:	“Mandelbrot	is
good	at	dreaming	up	pretty	questions.	I	don’t	think	he’s	proved	any	theorems	as
a	result	of	his	investigations,	but	that	is	not	what	he	claims	to	do.	By	his	own
telling,	he	is	a	philosopher	of	science.”

Mandelbrot	had	this	to	say	in	his	defence.

Mandelbrot	has	always	seen	himself	as	a	man	of	action.	His	geometry	is	of	the
real	world,	of	action	and	reaction,	of	cause	and	effect.	This	is	the	world	of	doing

The	issues	of	how	to	define	mathematics	today	and	of	whether	or	not	I	am	to	be	categorized	as	a	mathematician.	.	.	.	Are	neither	here	nor	there	important	consequences	have	come	out	of	my	dreaming
up	pretty	questions	in	many	different	fields	.	.	These	questions	are	not	discrete	and	haphazard	They	all	come	from	one	spring	no	doubt	krantz	damns	philosophers	of	science	as	commentators	and	critics

of	what	others	do	but	I	am	nothing	if	not	a	doer



real	world,	of	action	and	reaction,	of	cause	and	effect.	This	is	the	world	of	doing
–	and	you	can	do	things	with	his	geometry.	“My	work	and	the	work	of	those	it
has	inspired	is	certainly	not	found	in	philosophy	journals,	but	in	those	of
working	mathematics,	science	and	art.”



The	Special	Talent	of	Mandelbrot

Mandelbrot	was	awarded	the	Wolfe	Prize	for	mathematics	in	1993.	The	citation
reads	that	the	award	to	Dr	Benoît	Mandelbrot	was	for	“changing	the	way	we
look	at	the	world	through	the	concept	of	fractal	geometry”.	That	is	indeed
correct.	Ian	Stewart,	mathematician	and	champion	of	fractal	geometry,	has
summed	up	the	essence	of	Mandelbrot’s	story	in	his	book,	Does	God	Play	Dice?



Although	all	the	pieces	of	the	puzzle	had	lain	around	for	generations,	it	took	the	special	talents	of	benoît	Mandelbrot	to	put	them	together	And	to	convince	people	that	the	resulting	picture	was	worth
having	He	was	right	to	add	this	to	his	entry	in	who’s	who



The	Order	Is	Out	There

We	have	only	begun	to	see	what	fractal	geometry	might	achieve	for	us.	This	is
Ian	Stewart’s	view.	“Thanks	to	the	development	of	new	mathematical	theories
like	fractal	geometry,	nature’s	more	elusive	patterns	are	beginning	to	reveal	their
secrets.	Already	we	are	seeing	a	practical	impact	as	well	as	an	intellectual	one.”



Our	new-found	understanding	of	nature’s	secret	regularities	is	being	used	to
steer	artificial	satellites	to	new	destinations	with	far	less	fuel	than	anyone	had
thought	possible,	to	help	avoid	wear	on	the	wheels	of	locomotives	and	other
rolling	stock,	to	improve	the	effectiveness	of	heart	pacemakers,	to	manage
forests	and	fisheries,	even	to	make	more	efficient	dishwashers.	But	most
important	of	all,	it	is	giving	us	a	deeper	vision	of	the	universe	in	which	we	live,
and	of	our	place	in	it.
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The	Fractal	Geometry	of	Nature,	by	Benoît	B.	Mandelbrot	(W.	H.	Freeman,
New	York	1977).	This	is	the	seminal	work	on	fractal	geometry,	and
Mandelbrot’s	first	outpouring	of	his	discovery.	A	remarkable	book,	but	very
technical.

The	Emperor’s	New	Mind,	by	Roger	Penrose	(Vintage.	London	1990).	Explores
the	mystery	of	mind	and	consciousness	and	includes	a	fascinating	chapter	on
fractals	and	the	Mandelbrot	set,	or	–	as	Penrose	calls	it	–	The	Land	of	Tor	Bled-
Nam.

Does	God	Play	Dice?,	by	Ian	Stewart	(Penguin,	London	1990).	An	entertaining
and	thoughtful	introduction	to	the	new	mathematics	of	chaos	theory,	which
thoroughly	explores	fractal	geometry	in	this	context	and	traces	the	historical
background	to	the	theory.

The	Turbulent	Mirror,	by	John	Briggs	and	F.	David	Peat	(Harper	and	Row,	New
York	1989).	A	highly	creative	and	illustrated	guide	to	chaos	and	fractals.	A	lot
of	fun.

Fractals	–	Images	of	Chaos,	by	Hans	Lauwerier	(Penguin,	London	1991).	This
slim	volume	is	easy	to	read,	but	moderately	technical.	You	need	some	maths	to
enjoy	it.

Dynamical	Systems	and	Fractals,	by	Karl-Heinz	Becker	and	Michael	Dörfler,
translated	by	Ian	Stewart	(Cambridge	University	Press,	Cambridge	1989).
Covers	the	mathematics	of	chaos,	fractals	and	complex	dynamics,	and	is	aimed
at	the	technically-minded	who	are	familiar	with	computers.

The	Ghost	From	the	Grand	Banks,	by	Arthur	C.	Clarke	(Victor	Gollancz,
London	1993).	In	this	imaginative	novel	about	raising	a	sunken	ship	from	the
ocean	bed,	the	author	cleverly	weaves	in	a	pocket-sized	description	of	the
Mandelbrot	set.

Leadership	and	the	New	Science,	by	Margaret	J.	Wheatley	(Berrett-Koehler,	San
Francisco	1992).	This	book	shows	how	the	new	mathematics	is	providing	insight



into	the	way	we	organize	the	workplace,	and	how	things	might	be	improved	in
the	future.	Fractals	play	a	big	part	in	the	author’s	argument.

Fractals	Everywhere,	by	Michael	Barnsley	(Academic	Press,	San	Diego	1988).
One	of	the	first	books	on	fractal	geometry.	This	is	a	ground-breaking	work,	but
definitely	for	the	mathematicians	among	us.

Fractals	–	the	Patterns	of	Chaos,	by	John	Briggs	(Thames	and	Hudson.	London
1992).	This	is	a	beautifully	illustrated	coffee-table	book	which	captures	and
explores	the	fractal	characteristics	of	the	natural	world	in	the	light	of	chaos
theory.

The	Web	of	Life,	by	Fritjof	Capra	(HarperCollins,	London	1996).	The	author
presents	a	radical	synthesis	of	recent	scientific	breakthroughs	in	complexity
theory,	chaos	theory	and	fractal	geometry.

From	Here	to	Infinity,	by	Ian	Stewart	(Oxford	University	Press,	Oxford	1987).
Described	as	the	perfect	guide	to	today’s	mathematics,	this	book	is	very
accessible	and	is	a	fun	read.

Fractal	Geometry,	Mathematical	Foundations	and	Applications,	by	Kenneth
Falconer	(John	Wiley,	New	York	1990).	An	in-depth	account	of	the	theory	of
fractals	and	Hausdorff	dimension,	and	their	physical	applications.

Mazes	for	the	Mind,	by	Clifford	A.	Pickover	(Si	Martin’s	Press,	New	York
1992).	A	visual	exploration	of	the	frontiers	of	computer	research	into	the	strange
world	of	Cantor	cheese	and	fractal	ant	farms.

The	Science	of	Fractal	Images,	edited	by	Heinz-Otto	Peitgen	and	Dietmar	Saupe
(Springer-Verlag,	Berlin	1987).	A	beautiful	book	containing	recipes	for	many
stunning	fractal	constructions.
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